Skip to main content
Log in

Real Time Computationally Efficient MIMO System Identification Algorithm

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

MIMO system identification is a fundamental concern in a variety of applications. Various iterative and recursive MIMO system identification algorithms exist in the literature. The iterative algorithms suffer from high computational cost due to large matrix computations and recursive algorithms suffer from slow convergence speed. This paper proposes a fast recursive exact least squares algorithm for MIMO system identification with fast convergence speed and low computational cost. The recursions of the algorithm give rise to a lattice structure. The lattice structure is less sensitive to round-off errors, coefficients variations and can also be used for model order reduction. Although in this work we estimate an FIR (finite impulse response) model of the MIMO system, the framework can also be used for IIR (infinite impulse response) models, and for estimating linear periodically time varying (LPTV) and multivariable systems. The theory proposed is validated using simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wertz, V., Gevers, M., & Hannan, E. (1982). The determination of optimum structures for the state space representation of multivariate stochastic processes. IEEE Transactions on Automatic Control, 27(6), 1200–1211.

    Article  MathSciNet  Google Scholar 

  2. Stoica, P., & Jansson, M. (2000). MIMO system identification: state-space and subspace approximations versus transfer function and instrumental variables. IEEE Transactions on Signal Processing, 48(11), 3087–3099.

    Article  MathSciNet  Google Scholar 

  3. Ljung, L. (1991). Issues in system identification. Control Systems IEEE, 11(1), 25–29.

    Article  Google Scholar 

  4. Viberg, M. (1995). Subspace-based methods for the identification of linear time-invariant systems. Automatica, 31(12), 1835–1851. Trends in System Identification.

    Article  MathSciNet  Google Scholar 

  5. Gilson, M. (2015). What has instrumental variable method to offer for system identification? IFAC-PapersOnLine, 48(1), 354–359. 8th Vienna International Conferenceon Mathematical Modelling.

    Article  Google Scholar 

  6. Stoica, P., & Soderstrom, T. (1981). The Steiglitz-McBride identification algorithm revisited–convergence analysis and accuracy aspects. IEEE Transactions on Automatic Control, 26(3), 712–717.

    Article  MathSciNet  Google Scholar 

  7. Ma, P., Ding, F., Alsaedi, A., & Hayat, T. (2018). Decomposition-based gradient estimation algorithms for multivariate equation-error autoregressive systems using the multi-innovation theory. Circuits, Systems, and Signal Processing, 37(5), 1846–1862.

    Article  MathSciNet  Google Scholar 

  8. Ding, J. (2018). Recursive and iterative least squares parameter estimation algorithms for multiple-input–output-error systems with autoregressive noise. Circuits, Systems, and Signal Processing, 37(5), 1884–1906.

    Article  MathSciNet  Google Scholar 

  9. Liu, Q., & Ding, F. (2019). Auxiliary model-based recursive generalized least squares algorithm for multivariate output-error autoregressive systems using the data filtering. Circuits, Systems, and Signal Processing, 38(2), 590–610.

    Article  Google Scholar 

  10. Liu, L., Ding, F., Wang, C., Alsaedi, A., & Hayat, T. (2018). Maximum likelihood multi-innovation stochastic gradient estimation for multivariate equation-error systems. International Journal of Control, Automation and Systems, 16(5), 2528–2537.

    Article  Google Scholar 

  11. Lu, X., Ding, F., Alsaedi, A., & Hayat, T. (2019). Decomposition-based gradient estimation algorithms for multivariable equation-error systems. International Journal of Control, Automation and Systems.

  12. Han, L., & Ding, F. (2009). Multi-innovation stochastic gradient algorithms for multi-input multi-output systems. Digital Signal Processing, 19(4), 545–554.

    Article  Google Scholar 

  13. Ding, F., & Chen, T. (2005). Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica, 41, 315–325.

    Article  MathSciNet  Google Scholar 

  14. Ding, F., Wang, Y., & Ding, J. (2015). Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model. Digital Signal Processing, 37, 100–108.

    Article  Google Scholar 

  15. Wang, Y., & Ding, F. (2016). Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model. Automatica, 71(C), 308–313.

    Article  MathSciNet  Google Scholar 

  16. Wang, D.Q. (2011). Brief paper: least squares-based recursive and iterative estimation for output error moving average systems using data filtering. IET Control Theory Applications, 5(14), 1648–1657.

    Article  MathSciNet  Google Scholar 

  17. Liu, Q., Ding, F., Alsaedi, A., & Hayat, T. (2018). Recursive identification methods for multivariate output-error moving average systems using the auxiliary model. International Journal of Control, Automation and Systems, 16, 1–10.

    Article  Google Scholar 

  18. Wang, Y., & Ding, F. (2016). The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique. Signal Processing, 128, 212–221.

    Article  Google Scholar 

  19. Yuan, P., Ding, F., & Liu, P.X. (2008). HLS parameter estimation for multi-input multi-output systems. In 2008 IEEE International Conference on Robotics and Automation, pp. 857–861.

  20. Sheng, J., Wang, D., Baiocchi, O., & Wear, L. (2012). Multi-innovation least squares parameter estimation for multi-rate sdr receiver systems. In 2012 IEEE 11th International conference on signal processing, (Vol. 3 pp. 2148–2153).

  21. Xiao, Y., Chen, H., & Ding, F. (2011). Identification of multi-input systems based on correlation techniques. International Journal of Systems Science, 42(1), 139–147.

    Article  MathSciNet  Google Scholar 

  22. Qiu, W., Saleem, S.K., & Skafidas, E. (2012). Identification of MIMO systems with sparse transfer function coefficients. EURASIP Journal on Advances in Signal Processing, 2012(1), 104.

    Article  Google Scholar 

  23. Fatimah, B., & Joshi, S.D. (2014). Exact least squares algorithm for signal matched synthesis filter bank: Part II. arXiv:1409.5099.

  24. Vaidyanathan, P. (1993). Multirate systems and filter banks. Eaglewood Cliff: Prentice-Hall, Inc.,.

    MATH  Google Scholar 

  25. Wang, H.W., & Xia, H. (2013). A new identification method for non-uniformly sampled-data systems. In Proceedings of the 32nd Chinese control conference (pp. 1792–1796).

  26. Liu, X., & Lu, J. (2010). Least squares based iterative identification for a class of multirate systems. Automatica, 46(3), 549–554.

    Article  MathSciNet  Google Scholar 

  27. Viumdal, H., Mylvaganam, S., & Di Ruscio, D. (2014). System identification of a non-uniformly sampled multi-rate system in aluminium electrolysis cells. Modeling, Identification and Control, 35(3), 127–146.

    Article  Google Scholar 

  28. Phoong, S.-M., & Vaidyanathan, P.P. (1996). Time-varying filters and filter banks: some basic principles. IEEE Transactions on Signal Processing, 44(12), 2971–2987.

    Article  Google Scholar 

  29. Friedlander, B. (1982). Lattice filters for adaptive processing. Proceeding of IEEE, 70(8), 829–867.

    Article  Google Scholar 

  30. Prasad, S., & Joshi, S.D. (1992). A new recursive pseudo least squares algorithm for ARMA filtering and modeling. II. IEEE Transactions of Signal Processing, 40(11), 2775–2783.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binish Fatimah.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Formulae Used in the Algorithm

Appendix: Formulae Used in the Algorithm

We call a signal v(n) to be in a pre-windowed form if v(n) = 0 for n < 0. A given discrete time signal, v(Lni), is defined as 1 × K (K is a fixed number) vector, with KLni, :

$$ \begin{array}{@{}rcl@{}} \mathbf{v}(Ln-i) \equiv \left[\begin{array}{ccccccc} 0 & {\cdots} & 0 & v(-i) & v(L-i) & {\cdots} & v(Ln-i) \end{array}\right] \end{array} $$

and the set of vectors, {v(Lnk)|iki + p}, forms a (p + 1) × K matrix, denoted as \( V_{p+1}^{Ln-i}\), and is given as follows:

$$ \begin{array}{@{}rcl@{}} {V}_{p+1}^{Ln-i}\equiv \left[\begin{array}{c} \mathbf{v}(Ln-i)\\ \mathbf{v}(Ln-i-1)\\ \vdots\\ \mathbf{v}(Ln-i-p) \end{array}\right] .\end{array} $$
(29)

Here the superscript denotes the top row vector used and the subscript p + 1 denotes number of rows. The span of row-space of \({V_{p+1}^{Ln-i}}\) is given as:

$$ \begin{array}{@{}rcl@{}} S=span \{\mathbf{v}(Ln-i),\mathbf{v}(Ln-i-1),\cdots, \mathbf{v}(Ln-i-p)\} \end{array} $$

If the rows vectors are linearly independent, the span S can be written as:

$$ \begin{array}{@{}rcl@{}} S=span \{\mathbf{v}(Ln-i),\mathbf{v}(Ln-i-1),\cdots, \mathbf{v}(Ln-i-p)P^{\perp}\left[V_{p}^{Ln-i}\right]\}. \end{array} $$

The projection on span of \(V_{p+1}^{Ln-i}\) can be written as:

$$ \begin{array}{@{}rcl@{}} &P\left[V_{1+p}^{Ln-i}\right]=P\left[\begin{array}{c} V_{p}^{Ln-i}\\ \mathbf{v}(Ln-i-p)P^{\perp}\left[V_{p}^{Ln-i}\right] \end{array}\right]\\ &=P[V_{p}^{Ln-i}]+P\left[\mathbf{v}(Ln-i-p)P^{\perp}\left[V_{p}^{Ln-i}\right]\right] \end{array} $$
(30)

Since the projection operator is defined as P[X] = XT[XXT]− 1X, we can re-write the above equation as:

$$ \begin{array}{@{}rcl@{}} &P\left[V_{1+p}^{Ln-i}\right]=P[V_{p}^{Ln-i}]+P^{\perp}\left[V_{p}^{Ln-i}\right]\mathbf{v}^{T}(Ln-i-p)[\mathbf{v}(Ln-i-p) \\ &\times P^{\perp}\left[V_{p}^{Ln-i}]\mathbf{v}^{T}(Ln-i-p)\right]^{-1}\mathbf{v}(Ln-i-p)P^{\perp}\left[V_{p}^{Ln-i}\right] \end{array} $$
(31)

and the projection onto the orthogonal complement space, \(P^{\perp }\left [V_{1+p}^{Ln-i}\right ]\), can be written as

$$ \begin{array}{@{}rcl@{}} &P^{\perp}\left[V_{1+p}^{Ln-i}\right]=I-P\left[V_{1+p}^{n-1}\right]\\ &=P^{\perp}[V_{p}^{Ln-i}]-P^{\perp}\left[V_{p}^{Ln-i}\right]\mathbf{v}^{T}(Ln-i-p)[\mathbf{v}(Ln-i-p)\times\\ &P^{\perp}\left[V_{p}^{Ln-i}]\mathbf{v}^{T}(Ln-i-p)\right]^{-1}\mathbf{v}(Ln-i-p)P^{\perp}\left[V_{p}^{Ln-i}\right] \end{array} $$
(32)

Pre-multiply (32) with v and post-multiply with wT to get:

$$ \begin{array}{@{}rcl@{}} &\mathbf{v}P^{\perp}\left[V_{1+p}^{Ln-i}\right]\mathbf{w}^{T} =\mathbf{v}P^{\perp}[V_{p}^{Ln-i}]\mathbf{w}^{T}-\mathbf{v}P^{\perp}\left[V_{p}^{Ln-i}\right]\mathbf{v}^{T}(Ln-i-p)\times\\ &\left[\mathbf{v}(Ln-i-p)P^{\perp}\left[V_{p}^{Ln-i}\right]\mathbf{v}^{T}(Ln-i-p)\right]^{-1}\times\\ &\mathbf{v}(Ln-i-p)P^{\perp}\left[V_{p}^{Ln-i}\right]\mathbf{w}^{T} \end{array} $$
(33)

The above equation is known as the inner-product update formula, for more detail refer [29]. We now briefly discuss the projection update formula from [30]. This update relation is used to compute recursions for (17). Let us define \(K_{p+1}^{Ln-i}\), the pseudo-inverse of \(X^{Ln-i}_{p+1}\) i.e. \(X^{Ln-i}_{p+1}K_{p+1}^{Ln-i}=I\), as follows:

$$ \begin{array}{@{}rcl@{}} K_{p+1}^{Ln-i}=\left[X^{Ln-i}_{p+1}\right]^{T}\left[{X^{Ln-i}_{p+1}}\left[{X^{Ln-i}_{p+1}}\right]^{T}\right]^{-1} \end{array} $$
(34)

Pre-multiply (31) with z and post-multiply by \(K_{p+1}^{Ln-i}\), we get:

$$ \begin{array}{@{}rcl@{}} &{\mathbf{z} K_{p+1}^{Ln-i}}=\left[\begin{array}{c}{\mathbf{z} K_{p}^{Ln-i}}\\ 0 \end{array}\right] +{\mathbf{z} { P}^{\perp}[ V_{1:p}] \mathbf{\nu}_{p+1}^{T}}{[\mathbf{\nu}_{p+1} { P}^{\perp}[V_{1:p}] \mathbf{\nu}_{p+1}^{T}]^{-1}}.\\ & \left[\begin{array}{c}-\mathbf{\nu}_{p+1} K_{p}^{Ln-i}\\ 1 \end{array}\right] . \end{array} $$
(35)

For more information and derivation of (35) refer [30].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatimah, B., Joshi, S.D. Real Time Computationally Efficient MIMO System Identification Algorithm. J Sign Process Syst 93, 923–936 (2021). https://doi.org/10.1007/s11265-020-01619-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-020-01619-x

Keywords

Navigation