Skip to main content
Log in

Synthesis and characterization of liquid crystalline epoxy resins to study the effect of mesogenic length on the physical properties

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Two liquid crystalline epoxy (LCE) resins containing different mesogenic lengths were synthesized and cured with two different aromatic diamine curing agents, diaminodiphenylsulfone (DDS) and diaminodiphenylmethane (DDM) to prepare high performance LCE networks. The spectroscopic structures of LCE resins were identified by Fourier transform infrared (FT-IR) spectroscopy, Proton nuclear magnetic resonance (1H-NMR) spectroscopy, mass (MS) spectroscopy, and the formation of nematic and smectic liquid crystalline phase were observed by differential scanning calorimetry (DSC), and polarized optical microscopy (POM). The curing reactions and liquid crystalline textures of the LCE resins were also studied by DSC and POM on the process of curing. The thermal and mechanical properties were investigated for the cured LCE resins with different mesogenic lengths. These results show that the LCE cross-linked networks with long mesogenic group exhibited much higher storage modulus, glass transition temperature, thermal conductivity, thermal stability, and dimensional stability both in the regions of glassy and rubbery states. In addition, both LCE resins have superior thermal and mechanical properties compared to those of the commonly used epoxy resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Harada M, Okamoto N, Ochi M (2010) J Polym Sci. Part B: Polym Phys 48:2337–2345

    Article  CAS  Google Scholar 

  2. Kannan P, Sudhakara P (2011) In: High performance polymers and engineering plastics, 11th edn. Wiley, New York

    Google Scholar 

  3. Zoppe JO, Grosset L, Seppälä J (2013) Cellulose 20:2569–2582

    Article  CAS  Google Scholar 

  4. Ho TH, Wang CH (2001) Eur Polym J 37:267–274

    Article  CAS  Google Scholar 

  5. Cheng J, Chen J, Yang WT (2007) Chin Chem Lett 18:469–472

    Article  CAS  Google Scholar 

  6. Guo Q, Huang Y, Zhang YY, Zhu LR, Zhang BL (2010) J Therm Anal Calorim 102:915–922

    Article  CAS  Google Scholar 

  7. Liu G, Gao J, Song L, Hou W, Zhang L (2006) Macromol Chem Phys 207:2222–2231

    Article  CAS  Google Scholar 

  8. Vincent L, Mija A, Sbirrazzuoli N (2007) Polym Degrad Stab 92:2051–2057

    Article  CAS  Google Scholar 

  9. Qian L, Zhi J, Tong B, Shi J, Yang F, Dong Y (2009) Polymer 50:4813–4820

    Article  CAS  Google Scholar 

  10. Wang HM, Zhang YC, Zhu LR, Zhang BL, Zhang YY (2012) J Therm Anal Calorim 107:1205–1211

    Article  CAS  Google Scholar 

  11. Li Y, Badrinarayanan P, Kessler MR (2013) Polymer 54:3017–3025

    Article  CAS  Google Scholar 

  12. Kawamoto S, Fujiwara H, Nishimura S (2016) Int J Hydrogen Energ 41:7500–7510

    Article  CAS  Google Scholar 

  13. Ambrogi V, Giamberini M, Cerruti P, Pucci P, Menna N, Mascolo R, Carfagna C (2005) Polymer 46:2105–2121

    Article  CAS  Google Scholar 

  14. Zheng Y, Shen M, Lu M, Ren S (2006) Eur Polym J 42:1735–1742

    Article  CAS  Google Scholar 

  15. Rao VS, Samui AB (2008) J Polym Sci. Part A: Polym Chem 46:552–563

    Article  CAS  Google Scholar 

  16. Wlodarska M, Bak G, Mossety-Leszczak B, Galina H (2009) J Mater Process Technol 209:1662–1671

    Article  CAS  Google Scholar 

  17. Wang HM, Zhang YC, Zhu LR, Zhang BL, Zhang YY (2011) J Therm Anal Calorim 103:1031–1037

    Article  CAS  Google Scholar 

  18. Choi EJ, Ahn HK, Lee JK, Jin J (2000) Polymer 41:7617–7625

  19. Ochi M, Hori D, Watanbe Y, Takashima H, Harada M (2004) J Appl Polym Sci 92:3721–3729

    Article  CAS  Google Scholar 

  20. Harada M, Aoyama K, Ochi M (2004) J Polym Sci Part B: Polym Phys 42:4044–4052

    Article  CAS  Google Scholar 

  21. Gao Z (2007) J Appl Polym Sci 105:1861–1868

    Article  CAS  Google Scholar 

  22. Mohammed IA, Ali MF, Daud WRW (2012) J Ind Eng Chem 18:364–272

    Article  CAS  Google Scholar 

  23. Pang W, Zhao JW, Zhao L, Zhang ZK, Zhu SZ (2015) J Mol Struct 1096:21–28

    Article  CAS  Google Scholar 

  24. Giamberini M, Amendol E, Carfagna C (1995) Mol Cryst Liq Cryst 266:9–22

    Article  CAS  Google Scholar 

  25. Castell P, Galia M, Serra A (2001) Macromol Chem Phys 202:1649–1657

    Article  CAS  Google Scholar 

  26. Balamurugan R, Kannan P (2010) J Mater Sci 45:1321–1327

    Article  CAS  Google Scholar 

  27. Ortiz C, Kim R, Rodighiero E, Ober CK, Kramer EJ (1998) Macromolecules 31:4074–4088

    Article  CAS  Google Scholar 

  28. Smith DW, Boone HW, Traiphol R, Shah H, Perahia D (2000) Macromolecules 33:1126–1128

    Article  CAS  Google Scholar 

  29. Jang J, Bae J, Yoon SH (2003) J Mater Chem 13:676–681

    Article  CAS  Google Scholar 

  30. Yamamoto H, Fujita A, Harada M, Ochi M (2014) Mol Cryst Liq Cryst 588:41–50

    Article  CAS  Google Scholar 

  31. Giamberini M, Amendola E, Carfagna C (1997) Macromol Chem phys 198:3185–3196

    Article  CAS  Google Scholar 

  32. Callau L, Reina JA, Mantecón A, Tessier M, Spassky N (1999) Macromolecules 32:7790–7997

    Article  CAS  Google Scholar 

  33. Xu K, Chen M, Zhang X, Zhang K (2004) Macromol Chem phys 205:1559–1568

  34. Mititelu-Mija A, Cascaval CN, Navard P (2005) Des Monomers Polym 8:487–499

    Article  CAS  Google Scholar 

  35. Zucchi IA, Resnik T, Oyanguren PA, Galante MJ, Williams RJJ (2007) Polym Bull 58:145–151

    Article  CAS  Google Scholar 

  36. Lin YS, Hsu SLC, Ho TH, Cheng SS, Hsiao YH (2017) Polym Eng Sci 57:424–431

    Article  CAS  Google Scholar 

  37. Lee JY, Jang J, Hong SM, Hwang SS, Kim KU (1999) Polymer 40:3197–3202

    Article  CAS  Google Scholar 

  38. Lee JY, Jang J (2006) Polymer 47:3036–3042

    Article  CAS  Google Scholar 

  39. Cai ZQ, Zhou Q, Xu J (2007) J Polym Sci Part A: Polym Chem 45:727–735

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The financial support provided by the Ministry of Science and Technology (Taiwan, R.O.C.) through project MOST 103-2120-M-006 -004 -CC1 is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Lien-Chung Hsu.

Additional information

Publisher’s Note

 Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YS., Hsu, S.LC., Ho, TH. et al. Synthesis and characterization of liquid crystalline epoxy resins to study the effect of mesogenic length on the physical properties. J Polym Res 28, 28 (2021). https://doi.org/10.1007/s10965-020-02370-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02370-4

Keywords

Navigation