Skip to main content
Log in

Effect of surface coupling agents on the mechanical behaviour of polypropylene/silica composites: a molecular dynamics study

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

We investigate the mechanical behavior of polypropylene/silica composites under mode I and II loading by using molecular dynamics simulations, focusing on the effects of two typical surface coupling agents of HMDZ and APTES on the interface deformation and failure. It is found that under mode I loading, the silica surface functionalized with APTES can enhance the tensile strength of polypropylene/silica composites effectively. In contrast, the silica surface functionalized with HMDZ has little effect on the tensile strength. The simulation results are supported by experiments. Under mode II loading, it is found that both HMDZ and APTES can enhance the shear strength of polypropylene/silica composites with APTES being more effective. The underlying mechanisms for the enhancement of interface strength are analyzed. Our work provides a deep understanding of the interface structure, deformation and failure and will be useful for selecting suitable surface coupling agents in enhancing the interface strength of polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pegoretti A, Dorigato A et al (2019) Encyclopedia of Polymer Science and Technology. John Wiley & Sons, Inc. https://doi.org/10.1002/0471440264.pst130.pub2

  2. Shubhra QTH, Alam A, Quaiyyum MA et al (2011) Mechanical properties of polypropylene composites: A review. J Thermoplast Compos Mater 26:362–391. https://doi.org/10.1177/0892705711428659

    Article  CAS  Google Scholar 

  3. Saba N, Tahir P, Jawaid M et al (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polym 6:2247–2273. https://doi.org/10.3390/polym6082247

    Article  CAS  Google Scholar 

  4. Natarajan B, Li Y, Deng H, Brinson LC, Schadler LS et al (2013) Effect of interfacial energetics on dispersion and glass transition temperature in polymer nanocomposites. Macromol 46:2833–2841. https://doi.org/10.1021/ma302281b

    Article  CAS  Google Scholar 

  5. Adnan A, Sun CT, Mahfuz H et al (2007) A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites. Compos Sci Technol 67:348–356. https://doi.org/10.1016/j.compscitech.2006.09.015

    Article  CAS  Google Scholar 

  6. Liu S, Böhm MC, Müller-Plathe F et al (2016) Role of the interfacial area for structure and dynamics in polymer nanocomposites: molecular dynamics simulations of polystyrene with silica nanoparticles of different shapes. Mater Res Express 3:105301. https://doi.org/10.1088/2053-1591/3/10/105301

    Article  CAS  Google Scholar 

  7. Li ZQ, Liu ZS et al (2019) Energy transfer speed of polymer network and its scaling-law of elastic modulus-New insights. J Appl Phys 126:215101. https://doi.org/10.1063/1.5129621

    Article  CAS  Google Scholar 

  8. Suter JL, Groen D, Coveney PV et al (2015) Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties. Adv Mater 27:966–984. https://doi.org/10.1002/adma.201403361

    Article  CAS  PubMed  Google Scholar 

  9. Yeo JJ, Jung GS, Martin-Martinez FJ, Ling SJ, Gu GX, Qin Z, Buehler MJ et al (2018) Materials-by-design: computation, synthesis, and characterization from atoms to structures. Phys Scr 93:053003. https://doi.org/10.1088/1402-4896/aab4e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wei QH, Zhang YF, Wang YE, Yang MM et al (2017) A molecular dynamic simulation method to elucidate the interaction mechanism of nano-SiO2 in polymer blends. J Mater Sci 52:12889–12901. https://doi.org/10.1007/s10853-017-1330-0

    Article  CAS  Google Scholar 

  11. Wang F, Liu K, Li DC, Ji BH et al (2020) Fracture toughness of biological composites with multilevel structural hierarchy. J Appl Mech 87:071004. https://doi.org/10.1115/1.4046845

    Article  CAS  Google Scholar 

  12. Zhai C, Li T, Shi H, Yeo J et al (2020) Discovery and design of soft polymeric bio-inspired materials with multiscale simulations and artificial intelligence. J Mater Chem B 8:6562–6587. https://doi.org/10.1039/D0TB00896F

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Chia JYH, Su ZC, Tay TE, Tan VBC et al (2013) Mechanical characterization of interfaces in epoxy-clay nanocomposites by molecular simulations. Polym 54:766–773. https://doi.org/10.1016/j.polymer.2012.11.040

    Article  CAS  Google Scholar 

  14. Yuan Z, Lu Z, Yang Z, Sun J, Xie F et al (2016) A criterion for the normal properties of graphene/polymer interface. Comput Mater Sci 120:13–20. https://doi.org/10.1016/j.commatsci.2016.04.006

  15. Zhuang X, Zhou S et al (2018) Molecular dynamics study of an amorphous polyethylene/silica interface with shear tests. Mater 11. https://doi.org/10.3390/ma11060929

  16. Min K, Kim Y, Goyal S, Lee SH, McKenzie M, Park H, Savoy ES, Rammohan AR, Mauro JC, Kim H, Chae K, Lee HS, Shin J, Cho E et al (2016) Interfacial adhesion behavior of polyimides on silica glass: A molecular dynamics study. Polym 98:1–10. https://doi.org/10.1016/j.polymer.2016.06.017

    Article  CAS  Google Scholar 

  17. Mo YF, Yang CL, Xing YF, Wang MS, Ma XG, Wang LZ et al (2014) Effects of silica surface on the ordered orientation of polyethylene: A molecular dynamics study. Appl Surf Sci 311:273–278. https://doi.org/10.1016/j.apsusc.2014.05.055

    Article  CAS  Google Scholar 

  18. Vo VS, Nguyen VH, Mahouche-Chergui S, Carbonnier B, Di Tommaso D, Naili S et al (2017) From atomistic structure to thermodynamics and mechanical properties of epoxy/clay nanocomposites: Investigation by molecular dynamics simulations. Comput Mater Sci 139:191–201. https://doi.org/10.1016/j.commatsci.2017.07.024

    Article  CAS  Google Scholar 

  19. Maurel G, Goujon F, Schnell B, Malfreyt P et al (2015) Multiscale modeling of the polymer-silica surface interaction: from atomistic to mesoscopic simulations. J Phys Chem C 119:4817–4826. https://doi.org/10.1021/jp510979d

    Article  CAS  Google Scholar 

  20. Buell S, Rutledge GC, Van Vliet KJ et al (2010) Predicting polymer nanofiber interactions via molecular simulations. ACS Appl Mater Interfaces 2:1164–1172. https://doi.org/10.1021/am1000135

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Zhan HF, Xiang Y, Yang C, Wang CM, Zhang YY et al (2015) Effect of covalent functionalization on thermal transport across graphene-polymer interfaces. J Phys Chem C 119:12731–12738. https://doi.org/10.1021/acs.jpcc.5b02920

    Article  CAS  Google Scholar 

  22. Meltonyan AV, Poghosyan AH, Sargsyan SH, Margaryan KS, Shahinyan AA et al (2020) The conformation of adsorbed poly (vinylimidazole) on gold surface: a molecular dynamics study. J Polym Res 27:91. https://doi.org/10.1007/s10965-020-02075-8

    Article  CAS  Google Scholar 

  23. Maddah HA (2016) Polypropylene as a promising plastic: A review. Am J Polym Sci 6:1–11. https://doi.org/10.5923/j.ajps.20160601.01

    Article  CAS  Google Scholar 

  24. Zu L, Li R, Jin L, Lian H, Liu Y, Cui X et al (2014) Preparation and characterization of polypropylene/silica composite particle with interpenetrating network via hot emulsion sol–gel approach. Pro Nat Sci-Mater 24:42–49. https://doi.org/10.1016/j.pnsc.2014.01.001

    Article  CAS  Google Scholar 

  25. Mittal V (2009) Polymer layered silicate nanocomposites: A review. Mater 2:992–1057. https://doi.org/10.3390/ma2030992

    Article  CAS  Google Scholar 

  26. Parvathy Rao A, Venkateswara Rao A et al (2010) Modifying the surface energy and hydrophobicity of the low-density silica aerogels through the use of combinations of surface-modification agents. J Mater Sci 45:51–63. https://doi.org/10.1007/s10853-009-3888-7

    Article  CAS  Google Scholar 

  27. Pasternack RM, Amy SR, Chabal YJ et al (2008) Attachment of 3-(aminopropyl)triethoxysilane on silicon oxide surfaces: Dependence on solution temperature. Langmuir 24:12963–12971. https://doi.org/10.1021/la8024827

    Article  CAS  PubMed  Google Scholar 

  28. Acres RG, Ellis AV, Alvino J, Lenehan CE, Khodakov DA, Metha GF, Andersson GG et al (2012) Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces. J Phys Chem C 116:6289–6297. https://doi.org/10.1021/jp212056s

    Article  CAS  Google Scholar 

  29. Mahadik DB, Rao AV, Rao AP, Wagh PB, Ingale SV, Gupta SC et al (2011) Effect of concentration of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents on surface free energy of silica aerogels. J Colloid Interface Sci 356:298–302. https://doi.org/10.1016/j.jcis.2010.12.088

    Article  CAS  PubMed  Google Scholar 

  30. Arabnejad S, Manzhos S, Shim VPW et al (2016) Effect of surface treatment on the mode I debonding of interface between silica and nylon6. MRS Adv 1:2717–2722. https://doi.org/10.1557/adv.2016.530

    Article  CAS  Google Scholar 

  31. Qiao B, Wang TJ, Gao H, Jin Y et al (2015) High density silanization of nano-silica particles using gamma-aminopropyltriethoxysilane (APTES). Appl Surf Sci 351:646–654. https://doi.org/10.1016/j.apsusc.2015.05.174

    Article  CAS  Google Scholar 

  32. Golub AA, Zubenko AI, Zhmud BV et al (1996) gamma-APTES modified silica gels: The structure of the surface layer. J Colloid Interface Sci 179:482–487. https://doi.org/10.1006/jcis.1996.0241

    Article  CAS  Google Scholar 

  33. Meroni D, Lo Presti L, Di Liberto G, Ceotto M, Acres RG, Prince KC, Bellani R, Soliveri G, Ardizzone S et al (2017) A close look at the structure of the TiO2-APTES interface in hybrid nanomaterials and its degradation pathway: An experimental and theoretical study. J Phys Chem C 121:430–440. https://doi.org/10.1021/acs.jpcc.6b10720

    Article  CAS  Google Scholar 

  34. Akkermans RLC, Spenley NA, Robertson SH et al (2013) Monte Carlo methods in Materials Studio. Mol Simulat 39:1153–1164. https://doi.org/10.1080/08927022.2013.843775

    Article  CAS  Google Scholar 

  35. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  36. Sun H, Mumby SJ, Maple JR, Hagler AT et al (1994) An ab-initio CFF93 all-atom force-field for polycarbonates. J Am Chem Soc 116:2978–2987. https://doi.org/10.1021/ja00086a030

    Article  CAS  Google Scholar 

  37. Diao JK, Gall K, Dunn ML et al (2004) Atomistic simulation of the structure and elastic properties of gold nanowires. J Mech Phys Solids 52:1935–1962. https://doi.org/10.1016/j.jmps.2004.03.009

    Article  CAS  Google Scholar 

  38. Zimmerman JA, Webb EB, Hoyt JJ, Jones RE, Klein PA, Bammann DJ et al (2004) Calculation of stress in atomistic simulation. Modell Simul Mater Sci Eng 12:S319–S332. https://doi.org/10.1088/0965-0393/12/4/s03

    Article  CAS  Google Scholar 

  39. Novak I, Florian S et al (2001) Study of the change in polarity of polypropylene modified in bulk by polar copolymers. J Mater Sci 36:4863–4867. https://doi.org/10.1023/a:1011895000500

    Article  CAS  Google Scholar 

  40. Gu HW, Guo YB, Wong SY, He CB, Li X, Shim VPW et al (2013) Effect of interphase and strain-rate on the tensile properties of polyamide 6 reinforced with functionalized silica nanoparticles. Compos Sci Technol 75:62–69. https://doi.org/10.1016/j.compscitech.2012.12.004

    Article  CAS  Google Scholar 

  41. Karger-Kocsis J, Mahmood H, Pegoretti A et al (2015) Recent advances in fiber/matrix interphase engineering for polymer composites. Prog Mater Sci 73:1–43. https://doi.org/10.1016/j.pmatsci.2015.02.003

    Article  CAS  Google Scholar 

  42. Nygard P, Redford K, Gustafson CG et al (2002) Interfacial strength in glass fibre-polypropylene composites: influence of chemical bonding and physical entanglement. Compos Interfaces 9:365–388. https://doi.org/10.1163/156855402760194719

    Article  CAS  Google Scholar 

  43. Zhao Y, Qi X, Ma J, Song L, Yang Y, Yang Q et al (2018) Interface of polyimide-silica grafted with different silane coupling agents: Molecular dynamic simulation. J Appl Polym Sci 135:45725. https://doi.org/10.1002/app.45725

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the A*STAR Computational Resource Centre (ACRC) and the National Supercomputing Centre (NSCC) Singapore through the use of its high performance computing facilities and by the IMRE-SCG IAF-ICP Grant from A*STAR Science and Engineering Research Council (SERC) of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Xiang Pei or Ping Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, QX., Sorkin, V., Liu, P. et al. Effect of surface coupling agents on the mechanical behaviour of polypropylene/silica composites: a molecular dynamics study. J Polym Res 28, 29 (2021). https://doi.org/10.1007/s10965-020-02371-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02371-3

Keywords

Navigation