Skip to main content
Log in

Synthesis, characterization and environmental application of an original adsorbent: polyaniline-coated luffa cylindrica

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The coating of the fibrous skeleton of luffa cylindrica (LC) with polyaniline (PANI) was carried out by in-situ polymerization of aniline. A thin PANI layer in its emeraldine-salt form (ES) got bound on to the LC surface, as revealed by the green color the latter developed, procuring more roughness to the luffa fibers. The surfaces of both materials, i.e. the purified original luffa (LC) and the PANI-coated luffa (PANI/LC) were characterized by FTIR, completed by the Raman range, SEM/EDX and XRD. In particular, the presence of N–H moieties in the FTIR spectrum and the appearance of the following bands: C = N stretching of the quinoid di-imine units, C = C stretching of the quinoid ring and C–N.+ band of the radical-cation in the Raman spectrum confirmed the effectiveness of the coating of LC. Dedoping, as determined by solid addition method, completed at around pH 9.5. After characterization, PANI/LC was tested for its capacity to adsorb hexavalent chromium anionic species. First, the emergence of the chromium characteristic peak in the EDX spectrum brought experimental evidence for the effective sorption of chromium onto the PANI/LC surface. Then, the novel material displayed a high efficiency to retain the metallic pollutant, going up to ~ 300 mg.g−1. Thus, after the PANI-grafting, this light and cheap agricultural by-product should compete advantageously with commercial anionic exchangers, at least in terms of efficiency. Besides, adsorption parameters were examined. The Cr(VI) uptake process was found to follow second order kinetics, with a pseudo-second order rate constant equal to 0.7144 × 10–3 g.mg−1.min−1. At the lower end of concentrations, the adsorption efficiency decreased with increasing temperature. The computed thermodynamic parameters (namely ΔH°, ΔS° and ΔG°) indicate that adsorption is exothermic, with an unfavourable entropy change, and confirm its spontaneity. None of some classical models fitted the equilibrium sorption data, a result that expresses the sorption mechanism complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Enniya I, Rghioui L, Jourani A et al (2018) Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustainable Chemistry and Pharmacy 7:9–16

    Article  Google Scholar 

  2. Gupta S, Babu B et al (2009) Removal of toxic metal Cr (VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies. Chem Eng J 150(2–3):352–365

    Article  CAS  Google Scholar 

  3. Khosravi R, Moussavi G, Ghaneian MT, Ehrampoush MH, Barikbin B, Ebrahimi AA, Sharifzadeh G et al (2018) Chromium adsorption from aqueous solution using novel green nanocomposite: adsorbent characterization, isotherm, kinetic and thermodynamic investigation. J Mol Liq 256:163–174

    Article  CAS  Google Scholar 

  4. Yang J, Yu M, Chen W et al (2015) Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics. J Ind Eng Chem 21:414–422

    Article  CAS  Google Scholar 

  5. Sharaf S, Gasmeleed G, Musa A et al (2013) Reduction of Hexavalent Chromium from Chrome Shavings. International Journal of Advance Industrial Engineering 1:24–27

    Google Scholar 

  6. Shekhawat K, Chatterjee S, Joshi B et al (2015) Chromium toxicity and its health hazards. Int J Adv Res [Internet] 3(7):167–172

    CAS  Google Scholar 

  7. AbiD BA, BrbootI MM, Al-ShuwaikI NM et al (2011) Removal of heavy metals using chemicals precipitation. Engineering and Technology Journal 29(3):595–612

    Google Scholar 

  8. Onac C, Kaya A, Ataman D, Gunduz NA, Alpoguz HK et al (2019) The removal of Cr (VI) through polymeric supported liquid membrane by using calix [4] arene as a carrier. Chin J Chem Eng 27(1):85–91

    Article  CAS  Google Scholar 

  9. Golub D, Oren Y et al (1989) Removal of chromium from aqueous solutions by treatment with porous carbon electrodes: electrochemical principles. J Appl Electrochem 19(3):311–316

    Article  CAS  Google Scholar 

  10. Bashir A, Malik LA, Ahad S, Manzoor T, Bhat MA, Dar G, Pandith AH et al (2019) Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett 17(2):729–754

    Article  CAS  Google Scholar 

  11. Cherdchoo W, Nithettham S, Charoenpanich J et al (2019) Removal of Cr (VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea. Chemosphere 221:758–767

    Article  CAS  PubMed  Google Scholar 

  12. Rosales E, Escudero S, Pazos M, Sanromán M et al (2019) Sustainable Removal of Cr (VI) by Lime Peel and Pineapple Core Wastes. Applied Sciences 9 (10):1967

  13. Ahmed SM, Mohammad SG et al (2014) Biosorption of lead (II) ions from aqueous solution by Egyptian peach stones activated carbon. MYCOPATH 12(2):87–93

    Google Scholar 

  14. Ad C, Benalia M, Laidani Y, Elmsellem H, Saffedine FB, Nouacer I, Djedid M, El Mahi B, Hammouti B et al (2015) Adsorptive removal of cadmium from aqueous solution by Luffa Cylindrica: Equilibrium, dynamic and thermodynamic. Der Pharma Chemica Journal 7:388–397

    CAS  Google Scholar 

  15. Modrogan C, Costache C, Orbulet D et al (2007) Removal of hexavalent chromium from aqueous solutions by adsorption on peach kernel and nutshell. In: Proceedings of the 1st International Proficiency Testing Conference

  16. Chen S, Yue Q, Gao B, Li Q, Xu X, Fu K et al (2012) Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: a fixed-bed column study. Biores Technol 113:114–120

    Article  CAS  Google Scholar 

  17. Kan C-C, Ibe AH, Rivera KKP, Arazo RO, de Luna MDG et al (2017) Hexavalent chromium removal from aqueous solution by adsorbents synthesized from groundwater treatment residuals. Sustainable Environment Research 27(4):163–171

    Article  CAS  Google Scholar 

  18. Chwastowski J, Staroń P, Kołoczek H, Banach M et al (2017) Adsorption of hexavalent chromium from aqueous solutions using Canadian peat and coconut fiber. J Mol Liq 248:981–989

    Article  CAS  Google Scholar 

  19. Franguelli FP, Tannous K, Cione Coppi C et al (2019) Biosorption of hexavalent chromium from aqueous solutions using raw coconut fiber as a natural adsorbent. Chem Eng Commun:1–14

  20. Coşkun R, Birgül H, Delibaş A et al (2018) Synthesis of functionalized PET fibers by grafting and modification and their application for Cr (VI) ion removal. J Polym Res 25(1):29

    Article  Google Scholar 

  21. Mthombeni NH, Mbakop S, Ray SC, Leswifi T, Ochieng A, Onyango MS et al (2018) Highly efficient removal of chromium (VI) through adsorption and reduction: A column dynamic study using magnetized natural zeolite-polypyrrole composite. J Environ Chem Eng 6(4):4008–4017

    Article  CAS  Google Scholar 

  22. Feng Y, Du Y, Chen Z, Du M, Yang K, Lv X, Li Z et al (2018) Synthesis of Fe 3 O 4 nanoparticles with tunable sizes for the removal of Cr (VI) from aqueous solution. J Coat Technol Res 15(5):1145–1155

    Article  CAS  Google Scholar 

  23. Ebrahim S, Shokry A, Ibrahim H, Soliman M et al (2016) Polyaniline/akaganéite nanocomposite for detoxification of noxious Cr (VI) from aquatic environment. J Polym Res 23(4):79

    Article  Google Scholar 

  24. Valentín-Reyes J, García-Reyes R, García-González A, Soto-Regalado E, Cerino-Córdova F et al (2019) Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbons. J Environ Manage 236:815–822

    Article  PubMed  Google Scholar 

  25. Aggarwal D, Goyal M, Bansal R et al (1999) Adsorption of chromium by activated carbon from aqueous solution. Carbon 37(12):1989–1997

    Article  CAS  Google Scholar 

  26. Rai M, Shahi G, Meena V, Meena R, Chakraborty S, Singh R, Rai B et al (2016) Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4. Resource-Efficient Technologies 2:S63–S70

    Article  Google Scholar 

  27. Shi Y, Zhang T, Ren H, Kruse A, Cui R et al (2018) Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution. Biores Technol 247:370–379

    Article  CAS  Google Scholar 

  28. Su S, Liu Q, Liu J, Zhang H, Li R, Jing X, Wang J et al (2018) Polyethyleneimine-functionalized Luffa cylindrica for efficient uranium extraction. J Colloid Interface Sci 530:538–546

    Article  CAS  PubMed  Google Scholar 

  29. Mulani K, Patil V, Chavan N, Donde K et al (2019) Adsorptive removal of chromium (VI) using spherical resorcinol-formaldehyde beads prepared by inverse suspension polymerization. J Polym Res 26(2):41

    Article  Google Scholar 

  30. Vyas S, Shivhare S, Shukla A et al (2017) Polyaniline (PANI) Metal Oxide Nano Composites as a Conducting Material. Int J Res And Sci Innov 4(7):86

    Google Scholar 

  31. Martins S (2007) Tétra-et Poly (aniline) Dopées par des Acides n-Alcanesulfoniques: Structures et Propriétés Electroniques.

  32. Zeng X-R, Ko T-M et al (1998) Structures and properties of chemically reduced polyanilines. Polymer 39(5):1187–1195

    Article  CAS  Google Scholar 

  33. Boeva ZA, Sergeyev VG et al (2014) Polyaniline: Synthesis, properties, and application. Polym Sci Ser C 56(1):144–153

    Article  CAS  Google Scholar 

  34. Qiu B, Xu C, Sun D, Wang Q, Gu H, Zhang X, Weeks BL, Hopper J, Ho TC, Guo Z et al (2015) Polyaniline coating with various substrates for hexavalent chromium removal. Appl Surf Sci 334:7–14

    Article  CAS  Google Scholar 

  35. Khalkhali RA, Aliakbar A, Masoudi M et al (2005) Chromium (VI) removal from aqueous solutions using polyaniline coated on sawdust. J Polym Mater 22(1):75

    CAS  Google Scholar 

  36. Chávez-Guajardo AE, Medina-Llamas JC, Maqueira L, Andrade CA, Alves KG, de Melo CP et al (2015) Efficient removal of Cr (VI) and Cu (II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chem Eng J 281:826–836

    Article  Google Scholar 

  37. Ghorbani M, Eisazadeh H et al (2013) Removal of COD, color, anions and heavy metals from cotton textile wastewater by using polyaniline and polypyrrole nanocomposites coated on rice husk ash. Compos B Eng 45(1):1–7

    Article  CAS  Google Scholar 

  38. Dognani G, Hadi P, Ma H, Cabrera FC, Job AE, Agostini DL, Hsiao BS et al (2019) Effective chromium removal from water by polyaniline-coated electrospun adsorbent membrane. Chem Eng J 372:341–351

    Article  CAS  Google Scholar 

  39. Altınışık A, Gür E, Seki Y et al (2010) A natural sorbent, Luffa cylindrica for the removal of a model basic dye. J Hazard Mater 179(1–3):658–664

    Article  PubMed  Google Scholar 

  40. Ghali L, Msahli S, Zidi M, Sakli F et al (2009) Effect of pre-treatment of Luffa fibres on the structural properties. Mater Lett 63(1):61–63

    Article  CAS  Google Scholar 

  41. Ad C, Djedid M, Benalia M, Boudaoud A, Elmsellem H, Saffedine FB Adsorptive Removal of Nickel (II) Using Luffa cylindrica: Effect of NaCl Concentration on Equilibrium and Kinetic Parameters. In: Euro-Mediterranean Conference for Environmental Integration, 2017. Springer, pp 1305–1306

  42. Belaiba F, Meniai A-H, Bencheikh-Lehocine M, Mansri A, Morcellet M, Bacquet M, Martel B et al (2004) A macroscopic study of the retention capacity of copper b polyaniline coated onto silica gel and natural solid materials. Desalination 166:371–377

    Article  Google Scholar 

  43. Yuan Y, Zhou S, Liu Y, Tang J et al (2013) Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environ Sci Technol 47(24):14525–14532

    Article  CAS  PubMed  Google Scholar 

  44. Aichour A, Zaghouane-Boudiaf H, Iborra CV, Polo MS et al (2018) Bioadsorbent beads prepared from activated biomass/alginate for enhanced removal of cationic dye from water medium: Kinetics, equilibrium and thermodynamic studies. J Mol Liq 256:533–540

    Article  CAS  Google Scholar 

  45. Champagne A (2011) Synthèse et caractérisation de nouveaux matériaux dérivés de la polyaniline.

  46. da Silva JP, Temperini MLA, de Torresi SC et al (1999) Secondary doping of polyaniline studied by resonance Raman spectroscopy. Electrochim Acta 44(12):1887–1891

    Article  Google Scholar 

  47. Bernard M-C, Hugot-Le Goff A et al (1997) Raman spectroscopy for the study of polyaniline. Synth Met 85(1–3):1145–1146

    Article  CAS  Google Scholar 

  48. Boudaoud A, Djedid M, Benalia M, Ad C, Bouzar N, Elmsellem H et al (2017) Removal of nickel (II) and cadmium (II) ions from wastewater by palm fibers. Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry 18(4):391–406

    Google Scholar 

  49. Simonin J-P (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263

    Article  CAS  Google Scholar 

  50. Lagergren S (1898) Kung Sven. Veten. Hand 24(1):39

    Google Scholar 

  51. Blanchard G, Maunaye M, Martin G et al (1984) Removal of heavy metals from waters by means of natural zeolites. Water Res 18(12):1501–1507

    Article  CAS  Google Scholar 

  52. Gosset T, Trancart J-L, Thévenot DR et al (1986) Batch metal removal by peat: Kinetics and thermodynamics.

  53. Ho Y-S, McKay G et al (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  54. Ho Y-S (2006) Review of second-order models for adsorption systems. J Hazard Mater 136(3):681–689

    Article  CAS  PubMed  Google Scholar 

  55. Do DD (1998) Adsorption analysis: equilibria and kinetics, vol 2. Imperial college press London.

  56. McBain JW (1919) Theories of occlusion; and the sorption of iodine by carbon. Trans Faraday Soc 14:202–212

    Article  Google Scholar 

  57. Simonin J-P, Bouté J et al (2016) Intraparticle diffusion-adsorption model to describe liquid/solid adsorption kinetics. Revista mexicana de ingeniería química 15(1):161–173

    CAS  Google Scholar 

  58. Boyd G, Schubert J, Adamson A et al (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. I. Ion-exchange equilibria1. Journal of the American Chemical society 69 (11):2818–2829

  59. Weber WJ, Morris JC et al (1963) Kinetics of adsorption on carbon from solution. J. of the sanit. eng. division 89(2):31–60

    Article  Google Scholar 

  60. Mckay G, Otterburn M, Sweeney A et al (1980) The removal of colour from effluent using various adsorbents—III. Silica: Rate processes. Water research 14 (1):15–20

  61. Kong Q, He X, Shu L, Miao M-s et al (2017) Ofloxacin adsorption by activated carbon derived from luffa sponge: Kinetic, isotherm, and thermodynamic analyses. Process Saf Environ Prot 112:254–264

    Article  CAS  Google Scholar 

  62. Yan J, Lan G, Qiu H, Chen C, Liu Y, Du G, Zhang J et al (2018) Adsorption of heavy metals and methylene blue from aqueous solution with citric acid modified peach stone. Sep Sci Technol 53(11):1678–1688

    Article  CAS  Google Scholar 

  63. Tempkin M, Pyzhev V et al (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR 12(1):327

    Google Scholar 

  64. Elovich SY, Larinov O et al (1962) Theory of adsorption from solutions of non electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form,(II) verification of the equation of adsorption isotherm from solutions. Izv Akad Nauk SSSR, Otd Khim Nauk 2(2):209–216

    Google Scholar 

  65. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  66. Freundlich H (1906) Uber die adsorption in losungen, zeitschrift fur phtsikalische chemie. Am Chem Soc 62(5):121–125

    Google Scholar 

  67. Giles C, MacEwan T, Nakhwa S, Smith D et al (1960) A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Chem Soc 111:3973–3993

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awatef Dali.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dali, A., Boulguemh, I.E., Louafi, F. et al. Synthesis, characterization and environmental application of an original adsorbent: polyaniline-coated luffa cylindrica. J Polym Res 28, 33 (2021). https://doi.org/10.1007/s10965-020-02365-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02365-1

Keywords

Navigation