Skip to main content
Log in

Optimization and Pharmacokinetic Study of Boswellic Acid–Loaded Chitosan-Guggul Gum Nanoparticles Using Box-Behnken Experimental Design

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Macromolecules are important in polymer-based drug delivery systems as they help in specific targeting. This study explores the use of guggul gum (GG) and chitosan (Ch) in encapsulating boswellic acid (BA) which has high first-pass metabolism and low aqueous solubility for possible uses in inflammatory conditions.

Methods

Ionic complexation was used for nanoparticle formulation. The contents of guggul gum, chitosan, and boswellic acid were taken as independent variables, and their influence on encapsulation, particle size, and polydispersity were optimized by using Box-Behnken design. The developed formulation was assessed for drug release (in vitro) and release kinetics, stability, and preclinical pharmacokinetics. The formulation was also evaluated for inhibition of carrageenan-induced hind paw inflammation in rats.

Results

The nanoparticles were successfully prepared by ionic complexation method. The runs suggested by the design yielded a quadratic model for predicting the relationship between independent variables and responses. The optimum condition suggested by point prediction tool yielded spherical nanoparticles with 81.7% encapsulation, drug loading 21.2%, 377.19 nm size, and 0.201 PDI. The nanoparticles showed zero-order kinetics demonstrating an amalgamation of drug diffusion through matrix and erosion of polymeric medium.

Conclusion

Ionic complexation is a suitable method for nanopartile formulation. GG-Ch nanoparticles are beneficial for specific delivery and anti-inflammation of boswellic acid. The bioavailability of boswellic acid was increased by 11.38 times when given as a GG-Ch nanoparticle. The nanoparticles were stable at 25 °C for 6 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82. https://doi.org/10.1038/nrd2614.

    Article  CAS  PubMed  Google Scholar 

  2. Yoo J-W, Irvine DJ, Discher DE, Mitragotri S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov. 2011;10(7):521–35. https://doi.org/10.1038/nrd3499.

    Article  CAS  PubMed  Google Scholar 

  3. Worthington P, Langhans S, Pochan D. β-Hairpin peptide hydrogels for package delivery. Adv Drug Deliv Rev. 2017;110–111:127–36. https://doi.org/10.1016/j.addr.2017.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang YS, Khademhosseini A. Advances in engineering hydrogels. Science. 2017;356(6337):eaaf3627. https://doi.org/10.1126/science.aaf3627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Long D, Gong T, Zhang Z, Ding R, Fu Y. Preparation and evaluation of a phospholipid-based injectable gel for the long term delivery of leuprolide acetate. Acta Pharm Sin B. 2016;6(4):329–35. https://doi.org/10.1016/j.apsb.2016.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975–99. https://doi.org/10.2147/IJN.S68861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yue X, Dai Z. Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers. Adv Colloid Interf Sci. 2014;207:32–42. https://doi.org/10.1016/j.cis.2013.11.014.

    Article  CAS  Google Scholar 

  8. Guo S, Huang L. Nanoparticles containing insoluble drug for cancer therapy. Biotechnol Adv. 2014;32(4):778–88. https://doi.org/10.1016/j.biotechadv.2013.10.002.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B. 2018;8(1):34–50. https://doi.org/10.1016/j.apsb.2017.11.005.

    Article  PubMed  Google Scholar 

  10. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014;4:177. https://doi.org/10.3389/fphar.2013.00177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tu J, Xu Y, Xu J, Ling Y, Cai Y. Chitosan nanoparticles reduce LPS-induced inflammatory reaction via inhibition of NF-κB pathway in Caco-2 cells. Int J Biol Macromol. 2016;86:848–56. https://doi.org/10.1016/j.ijbiomac.2016.02.015.

    Article  CAS  PubMed  Google Scholar 

  12. Abul Kalam M, Khan AA, Khan S, Almalik A, Alshamsan A. Optimizing indomethacin-loaded chitosan nanoparticle size, encapsulation, and release using box–Behnken experimental design. Int J Biol Macromol. 2016;87:329–40. https://doi.org/10.1016/j.ijbiomac.2016.02.033.

    Article  CAS  PubMed  Google Scholar 

  13. Meng J, Sturgis TF, Youan B-BC. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur J Pharm Sci. 2011;44(1):57–67. https://doi.org/10.1016/j.ejps.2011.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ostanina ES, Varlamov VP, Yakovlev GI. Inhibition of lipase activity by low-molecular-weight chitosan. Appl Biochem Microbiol. 2007;43(6):655–60. https://doi.org/10.1134/S0003683807060154.

    Article  CAS  Google Scholar 

  15. Sadreddini S, Safaralizadeh R, Baradaran B, Aghebati-Maleki L, Hosseinpour-Feizi MA, Shanehbandi D, et al. Chitosan nanoparticles as a dual drug/siRNA delivery system for treatment of colorectal cancer. Immunol Lett. 2017;181:79–86. https://doi.org/10.1016/j.imlet.2016.11.013.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu N, Rafi MM, DiPaola RS, Xin J, Chin C-K, Badmaev V, et al. Bioactive constituents from gum guggul (Commiphora wightii). Phytochemistry. 2001;56(7):723–7. https://doi.org/10.1016/S0031-9422(00)00485-4.

    Article  CAS  PubMed  Google Scholar 

  17. Sarup P, Bala S, Kamboj S. Pharmacology and phytochemistry of oleo-gum resin of Commiphora wightii (Guggulu). Scientifica (Cairo). 2015;2015:138039. https://doi.org/10.1155/2015/138039.

    Article  CAS  Google Scholar 

  18. Gaur PK, Mishra S, Purohit S. Solid lipid nanoparticles of guggul lipid as drug carrier for transdermal drug delivery. Biomed Res Int. 2013;2013:750690. https://doi.org/10.1155/2013/750690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Siddiqui MZ. Boswellia serrata, a potential antiinflammatory agent: an overview. Indian J Pharm Sci. 2011;73(3):255–61. https://doi.org/10.4103/0250-474X.93507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharma ML, Bani S, Singh GB. Anti-arthritic activity of boswellic acids in bovine serum albumin (BSA)-induced arthritis. Int J Immunopharmacol. 1989;11(6):647–52. https://doi.org/10.1016/0192-0561(89)90150-1.

    Article  CAS  PubMed  Google Scholar 

  21. Dahmen U, Gu YL, Dirsch O, Fan LM, Li J, Shen K, et al. Boswellic acid, a potent antiinflammatory drug, inhibits rejection to the same extent as high dose steroids. Transplant Proc. 2001;33(1):539–41. https://doi.org/10.1016/S0041-1345(00)02131-X.

    Article  CAS  PubMed  Google Scholar 

  22. Ammon HPT. Boswellic acids in chronic inflammatory diseases. Planta Med. 2006;72(12):1100–16. https://doi.org/10.1055/s-2006-947227.

    Article  CAS  PubMed  Google Scholar 

  23. Syrovets T, Büchele B, Krauss C, Laumonnier Y, Simmet T. Acetyl-Boswellic acids inhibit lipopolysaccharide-mediated TNF-α induction in monocytes by direct interaction with IκB kinases. J Immunol. 2005;174(1):498–506. https://doi.org/10.4049/jimmunol.174.1.498.

    Article  CAS  PubMed  Google Scholar 

  24. Sengupta K, Golakoti T, Marisetti A, Tummala T, Ravada S, Alluri K, et al. Inhibition of TNFα production and blocking of mitogen-activated protein kinase/NFκB activation in lipopolysaccharide-induced thp-1 human monocytes by 3-o-acetyl-11-keto-β-boswellic acid. J Food Lipids. 2009;16:325–44. https://doi.org/10.1111/j.1745-4522.2009.01150.x.

    Article  CAS  Google Scholar 

  25. Skarke C, Kuczka K, Tausch L, Werz O, Rossmanith T, Barrett JS, et al. Increased bioavailability of 11-Keto-β-Boswellic acid following single oral dose frankincense extract administration after a standardized meal in healthy male volunteers: modeling and simulation considerations for evaluating drug exposures. J Clin Pharmacol. 2012;52(10):1592–600. https://doi.org/10.1177/0091270011422811.

    Article  CAS  PubMed  Google Scholar 

  26. Bagul P, Khomane KS, Bansal AK. Investigating permeability related hurdles in oral delivery of 11-keto-β-boswellic acid. Int J Pharm. 2014;464(1):104–10. https://doi.org/10.1016/j.ijpharm.2014.01.019.

    Article  CAS  PubMed  Google Scholar 

  27. Sterk V, Büchele B, Simmet T. Effect of food intake on the bioavailability of boswellic acids from a herbal preparation in healthy volunteers. Planta Med. 2004;70(12):1155–60. https://doi.org/10.1055/s-2004-835844.

    Article  CAS  PubMed  Google Scholar 

  28. Bairwa K, Jachak SM. Nanoparticle formulation of 11-keto-β-boswellic acid (KBA): anti-inflammatory activity and in vivo pharmacokinetics. Pharm Biol. 2016;54(12):2909–16. https://doi.org/10.1080/13880209.2016.1194437.

    Article  CAS  PubMed  Google Scholar 

  29. Bairwa K, Jachak SM. Development and optimisation of 3-acetyl-11-keto-β-boswellic acid loaded poly-lactic-co-glycolic acid-nanoparticles with enhanced oral bioavailability and in-vivo anti-inflammatory activity in rats. J Pharm Pharmacol. 2015;67(9):1188–97. https://doi.org/10.1111/jphp.12420.

    Article  CAS  PubMed  Google Scholar 

  30. Bernela M, Ahuja M, Thakur R. Enhancement of anti-inflammatory activity of glycyrrhizic acid by encapsulation in chitosan-katira gum nanoparticles. Eur J Pharm Biopharm. 2016;105:141–7. https://doi.org/10.1016/j.ejpb.2016.06.003.

    Article  CAS  PubMed  Google Scholar 

  31. Gaur PK, Shanmugam SK. Box-Behnken design–directed optimization of Wickerhamomyces anomalus–mediated biotransformation process to enhance the flavonoid profile of Polyherbal extract. J Pharm Innov. 2020. https://doi.org/10.1007/s12247-020-09467-9.

  32. Gaur PK, Mishra S, Bajpai M, Mishra A. Enhanced oral bioavailability of efavirenz by solid lipid nanoparticles: in vitro drug release and pharmacokinetics studies. Biomed Res Int. 2014;2014:363404. https://doi.org/10.1155/2014/363404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaur PK, Bajpai M, Mishra S, Verma A. Development of ibuprofen nanoliposome for transdermal delivery: physical characterization, in vitro/in vivo studies, and anti-inflammatory activity. Artif Cells Nanomed Biotechnol. 2016;44(1):370–5. https://doi.org/10.3109/21691401.2014.953631.

    Article  CAS  PubMed  Google Scholar 

  34. Yadav M, Ahuja M. Preparation and evaluation of nanoparticles of gum cordia, an anionic polysaccharide for ophthalmic delivery. Carbohydr Polym. 2010;81(4):871–7. https://doi.org/10.1016/j.carbpol.2010.03.065.

    Article  CAS  Google Scholar 

  35. Robinson NG. 16 - Complementary and alternative medicine for cancer: the good, the bad, and the dangerous. In: Withrow SJ, Vail DM, Page RL, editors. Withrow and MacEwen’s small animal clinical oncology. 5th ed. Saint Louis: W.B. Saunders; 2013. p. 280–92.

    Chapter  Google Scholar 

  36. Siemoneit U, Koeberle A, Rossi A, Dehm F, Verhoff M, Reckel S, et al. Inhibition of microsomal prostaglandin E2 synthase-1 as a molecular basis for the anti-inflammatory actions of boswellic acids from frankincense. Br J Pharmacol. 2011;162(1):147–62. https://doi.org/10.1111/j.1476-5381.2010.01020.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Poeckel D, Tausch L, Kather N, Jauch J, Werz O. Boswellic acids stimulate arachidonic acid release and 12-lipoxygenase activity in human platelets independent of Ca2+ and differentially interact with platelet-type 12-lipoxygenase. Mol Pharmacol. 2006;70(3):1071–8. https://doi.org/10.1124/mol.106.024836.

    Article  CAS  PubMed  Google Scholar 

  38. Cao H, Yu R, Choi Y, Ma Z-Z, Zhang H, Xiang W, et al. Discovery of cyclooxygenase inhibitors from medicinal plants used to treat inflammation. Pharmacol Res. 2010;61(6):519–24. https://doi.org/10.1016/j.phrs.2010.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fehrenbacher JC, Vasko MR, Duarte DB. Models of inflammation: carrageenan- or complete Freund’s adjuvant (CFA)–induced edema and hypersensitivity in the rat. Curr Protoc Pharmacol. 2012;56(1):5.4.1–5.4. https://doi.org/10.1002/0471141755.ph0504s56.

    Article  Google Scholar 

Download references

Acknowledgments

The authors graciously acknowledge the management of I.T.S College of Pharmacy for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Gaur.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaur, P.K., Puri, D., Singh, A.P. et al. Optimization and Pharmacokinetic Study of Boswellic Acid–Loaded Chitosan-Guggul Gum Nanoparticles Using Box-Behnken Experimental Design. J Pharm Innov 17, 485–500 (2022). https://doi.org/10.1007/s12247-020-09527-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09527-0

Keywords

Navigation