Skip to main content
Log in

Developing and Featuring Matrix Tablets by Using Gross Linseed Mucilage as a Retardant Polymer

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Evaluating the potential of gross Linum usitatissimum L. seed mucilage to be used as a drug release retardant. In order to do so, seeds were subjected to a simple and scalable extractive process comprising few stages, without alcohol-based precipitation. Matrix tablets based on hydrophilic polymers are one of the simplest forms of developing modified release systems.

Methods

Flaxseeds were added to distilled water at a flaxseed:water ratio of 1:13; the suspension was continuously stirred at room temperature, for 24 h. Flaxseeds were sieved and the gross linseed mucilage was freeze-dried. Subsequently, the sample was analyzed through Fourier transform infrared spectroscopy (IV-TF) at wavelength ranging from 650 to 4000 cm−1.

Results

Infrared (IR) spectroscopy analysis has suggested the presence of flaxseed mucilage polymers in the extracted product. Tablets presenting mucilage or HPMC (hydroxypropyl methylcellulose) and tablets without polymer were prepared based on the wet granulation technique. Matrix tablets presenting mucilage or HPMC have shown similar dissolution profiles, as well as similar potential in drug release control.

Conclusion

The product extracted from flaxseed under simple conditions, even without undergoing purification process, can have high technological value in the pharmaceutical industry because it has excellent potential to be used as excipient for matrix tablet manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Available.

References

  1. Lopes CM, Lobo JMS, Costa P. Modified release of drug delivery systems: hydrophilic polymers. Braz J Pharm Sci. 2005;41:143–54. https://doi.org/10.1590/S1516-93322005000200003.

    Article  CAS  Google Scholar 

  2. Singh A, Sharma PK, Malviya R. Release behavior of drugs from various natural gums and polymers. Polim Med. 2011;41:73–80.

    CAS  PubMed  Google Scholar 

  3. Prajapati VD, Jani GK, Moradiya NG, Randeria NP. Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr Polym. 2013;92:1685–99. https://doi.org/10.1016/j.carbpol.2012.11.021.

    Article  CAS  PubMed  Google Scholar 

  4. Nayak AK, Hasnain MS. Ionotropically gelled alginate particles in sustained drug release. Alginates Drug Deliv INC. 2020. https://doi.org/10.1016/B978-0-12-817640-5.00009-1.

  5. Adeleye OA d, Femi-Oyewo MN y, Odeniyi MA y. The effect of processing variables on the mechanical and release properties of tramadol matrix tablets incorporating Cissus populnea gum as controlled release excipient. Polim Med. 2014;44:209–20.

    PubMed  Google Scholar 

  6. Patel MT, Patel JK, Upadhyay UM. Assessment of various pharmaceutical excipient properties of natural Moringa oleifera gum [Mucoadhesion, disintegration, binder]. 2012; 2:983–90.

  7. Mylangam CK, Beeravelli S, Medikonda J, Pidaparthi JS, Kolapalli VRM. Badam gum: a natural polymer in mucoadhesive drug delivery. Design, optimization, and biopharmaceutical evaluation of badam gum-based metoprolol succinate buccoadhesive tablets. Drug Deliv. 2016. https://doi.org/10.3109/10717544.2014.908979.

  8. Khinchi MP, Gupta MK, Bhandari A, Agarwal D, Sharma N. Studies on the disintegrant properties of seed powder, husk powder and mucilage of Plantago ovata by formulation of orally disintegrating tablet. Int J Pharm Sci Res. 2011;2:145–52.

    Google Scholar 

  9. Verma PRP, Razdan B. Studies on Leucaena leucocephala seed gum: emulsifying properties. J Sci Ind Res. 2003;62:198–206.

    CAS  Google Scholar 

  10. Deore SL, Khadabadi SS. Standardisation and pharmaceutical evaluation of chlorophytum borivilianum mucilage. Rasayan J Chem. 2008;1:887–92.

    Google Scholar 

  11. Muhammad G, Haseeb MT, Hussain MA, Ashraf MU, Farid-ul-Haq M, Zaman M. Stimuli-responsive/smart tablet formulations (under simulated physiological conditions) for oral drug delivery system based on glucuronoxylan polysaccharide. Drug Dev Ind Pharm. 2020;46:122–34. https://doi.org/10.1080/03639045.2019.1706551.

    Article  CAS  PubMed  Google Scholar 

  12. Nerkar PP, Gattani S. In vivo, in vitro evaluation of linseed mucilage based buccal mucoadhesive microspheres of venlafaxine. Drug Deliv. 2011;18:111–21. https://doi.org/10.3109/10717544.2010.520351.

    Article  CAS  PubMed  Google Scholar 

  13. Nerkar PP, Gattani SG. Oromucosal delivery of venlafaxine by linseed mucilage based gel: in vitro and in vivo evaluation in rabbits. Arch Pharm Res. 2013;36:846–53. https://doi.org/10.1007/s12272-013-0097-3.

    Article  CAS  PubMed  Google Scholar 

  14. Haseeb MT, Hussain MA, Yuk SH, Bashir S, Nauman M. Polysaccharides based superabsorbent hydrogel from linseed: dynamic swelling, stimuli responsive on-off switching and drug release. Carbohydr Polym. 2016;136:750–6. https://doi.org/10.1016/j.carbpol.2015.09.092.

    Article  CAS  PubMed  Google Scholar 

  15. Haseeb MT, Hussain MA, Bashir S, Ashraf MU, Ahmad N. Evaluation of superabsorbent linseed-polysaccharides as a novel stimuli-responsive oral sustained release drug delivery system. Drug Dev Ind Pharm. 2017;43:409–20. https://doi.org/10.1080/03639045.2016.1257017.

    Article  CAS  PubMed  Google Scholar 

  16. Sheikh FA, Hussain MA, Ashraf MU, Haseeb MT, Farid-ul-Haq M. Linseed hydrogel based floating drug delivery system for fluoroquinolone antibiotics: design, in vitro drug release and in vivo real-time floating detection. Saudi Pharm J. 2020;28:538–49. https://doi.org/10.1016/j.jsps.2020.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saquib Hasnain M, Rishishwar P, Rishishwar S, Ali S, Nayak AK. Isolation and characterization of Linum usitatisimum polysaccharide to prepare mucoadhesive beads of diclofenac sodium. Int J Biol Macromol. 2018;116:162–72.

    Article  CAS  Google Scholar 

  18. Bekhit AEDA, Shavandi A, Jodjaja T, Birch J, Teh S, Mohamed Ahmed IA, et al. Flaxseed: composition, detoxification, utilization, and opportunities. Biocatal Agric Biotechnol. 2018;13:129–52. https://doi.org/10.1016/j.bcab.2017.11.017.

    Article  Google Scholar 

  19. Oomah BD, Mazza G. Flaxseed proteins-a review. Food Chem. 1993;48:109–14. https://doi.org/10.1016/0308-8146(93)90043-F.

    Article  CAS  Google Scholar 

  20. Dzuvor CKO, Taylor JT, Acquah C, Pan S, Agyei D. Bioprocessing of functional ingredients from flaxseed. Molecules. 2018;23:1–18.

    Article  CAS  Google Scholar 

  21. Zuk M, Richter D, Matuła J, Szopa J. Linseed, the multipurpose plant. Ind Crop Prod. 2015;75:165–77. https://doi.org/10.1016/j.indcrop.2015.05.005.

    Article  CAS  Google Scholar 

  22. Nikbakht Nasrabadi M, Goli SAH, Sedaghat Doost A, Van der Meeren P. Characterization and enhanced functionality of nanoparticles based on linseed protein and linseed gum biocomplexes. Int J Biol Macromol. 2020;151:116–23.

    Article  CAS  Google Scholar 

  23. Ziolkovska A. Laws of flaxseed mucilage extraction. Food Hydrocoll. 2012;26:197–204. https://doi.org/10.1016/j.foodhyd.2011.04.022.

    Article  CAS  Google Scholar 

  24. Oomah BD, Mazza G. Effect of dehulling on chemical composition and physical properties of flaxseed. LWT-Food Sci Technol. 1997;30(2):135–40.

    Article  CAS  Google Scholar 

  25. Gros C, Lanoisellé JL, Vorobiev E. Towards an alternative extraction process for linseed oil. Chem Eng Res Des. 2003;81(9):1059–65.

    Article  CAS  Google Scholar 

  26. Brasil. Farmacopéia Brasileira 5 ed. Farmacopéia Brasileira. 2010.

  27. Rocha MS, Rocha LCS, Feijó MBS, Marotta PLLS & Mourão SC (2020). Effect of pH on the flaxseed (Linum usitatissimum L. seed) mucilage extraction process. Acta Sci Technol, IN PRESS. https://doi.org/10.4025/actascitechnol.v43i1.50457

  28. Lopes Roveri F, Faria LG, Ribeiro-Neto LM, Silva AM. Avaliação da aplicação de método espectrofotométrico para determinação do teor de ibuprofeno em diferentes formas farmacêuticas. Rev Bras. 2012;93:186–90 http://www.rbfarma.org.br/files/rbf-2012-93-2-9.pdf. Accessed 21 Feb 2020

  29. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001:123–33. https://doi.org/10.1016/S0928-0987(01)00095-1.

  30. Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27:48–9. https://doi.org/10.1111/j.2042-7158.1975.tb09378.x.

    Article  CAS  PubMed  Google Scholar 

  31. Cui W, Mazza G, Oomah BD, Biliaderis CG. Optimization of an aqueous extraction process for flaxseed gum by response surface methodology. Food Sci Technol. 1994;27:363–9. https://doi.org/10.1006/fstl.1994.1074.

    Article  CAS  Google Scholar 

  32. Mano EB. Mendes LC. Edgard Blucher LTDA: Introdução a polímeros; 2004.

    Google Scholar 

  33. Naran R, Chen G, Carpita NC. Novel rhamnogalacturonan I and arabinoxylan polysaccharides of flax seed mucilage. Plant Physiol. 2008;148:132–41. https://doi.org/10.1104/pp.108.123513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oomah BD, Kenaschuk EO, Cui W, Mazza G. Variation in the composition of water-soluble polysaccharides in flaxseed. J Agric Food Chem. 1995;43:1484–8. https://doi.org/10.1021/jf00054a013.

    Article  CAS  Google Scholar 

  35. Burgos-Díaz C, Rubilar M, Morales E, Medina C, Acevedo F, Marqués AM, et al. Naturally occurring protein-polysaccharide complexes from linseed (Linum usitatissimum) as bioemulsifiers. Eur J Lipid Sci Technol. 2016;118:165–74. https://doi.org/10.1002/ejlt.201500069.

    Article  CAS  Google Scholar 

  36. Liu J, Shen J, Shim YY, Reaney MJT. Carboxymethyl derivatives of flaxseed (Linum usitatissimum L.) gum: characterisation and solution rheology. Int J Food Sci Technol. 2016;51:530–41. https://doi.org/10.1111/ijfs.12985.

    Article  CAS  Google Scholar 

  37. Prado NS, Silva ISV da, Silva TAL, Oliveira WJ de, Motta LA de C, Pasquini D, et al. Nanocomposite films based on flaxseed gum and cellulose nanocrystals. Mater Res 2018; 21. https://doi.org/10.1590/1980-5373-mr-2018-0134.

  38. Haseeb MT, Khaliq NU, Yuk SH, Muhammad Ajaz Hussain SB. Linseed polysaccharides based nanoparticles for controlled delivery of docetaxel: design, in vitro drug release and cellular uptake. J Drug Deliv Sci Technol. 2018. https://doi.org/10.1016/j.ijrefrig.2014.04.010.

  39. Cui W, Mazza G, Biliaderis CG. Chemical structure, molecular size distributions, and rheological properties of flaxseed gum. J Agric Food Chem. 1994;42:1891–5.

    Article  CAS  Google Scholar 

  40. Potthast H, Dressman JB, Junginger HE, Midha KK, Oeser H, Shah VP, et al. Biowaiver monographs for immediate release solid oral dosage forms: ibuprofen. J Pharm Sci. 2005;94:2121–31. https://doi.org/10.1002/jps.20444.

    Article  CAS  PubMed  Google Scholar 

  41. Couto AG, Ortega GG, Petrovick PR. Granulação. Cadernos de Farmácia. 2000;16:13–20.

    Google Scholar 

  42. Brasil. Farmacopéia Brasileira: parte I e II. 4.ed. Atheneu SP, editor. BRASÍLIA; 1998.

  43. Ferraz HG, Consiglieri VO, Storpirtis S. Avaliacao da cinetica de dissolucao de ampicilina em comprimidos comercializados no Brasil. Revista de Farmacia e Bioquimica da Universidade de Sao Paulo. 1998.

  44. Pachuau L, Mazumder B. Albizia procera gum as an excipient for oral controlled release matrix tablet. Carbohydr Polym. 2012;90:289–95. https://doi.org/10.1016/j.carbpol.2012.05.038.

    Article  CAS  PubMed  Google Scholar 

  45. Emeje M, Nwabunike P, Isimi C, Fortunak J, Mitchell JW, Byrn S, et al. Isolation, characterization and formulation properties of a new plant gum obtained from Cissus refescence. Int J Green Pharm. 2009;3:16–23. https://doi.org/10.4103/0973-8258.49369.

    Article  Google Scholar 

  46. Nep EI, Conway BR. Polysaccharide gum matrix tablets for oral controlled delivery of cimetidine. J Pharm Sci Res. 2010;2:708–16.

    CAS  Google Scholar 

  47. Kaleemullah M, Jiyauddin K, Thiban E, Rasha S, Al-Dhalli S, Budiasih S, et al. Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage. Saudi Pharm J. 2016;25:770–9. https://doi.org/10.1016/j.jsps.2016.10.006.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ahad HA, Kumar CS, Budideti KKR, Battula SP, Ayyavala CS. Formulation and evaluation of Ficus glomerata mucilage sustained release matrix tablets of gliclazide. Pak J Pharm Sci. 2011;24:399–404.

    Google Scholar 

  49. Indira Muzib Y, Kurri PS. Formulation and evaluation of gum olibanum-based sustained release matrix tablets of Ambroxol hydrochloride. Int J Pharm Pharm Sci. 2011;3:195–9.

    Google Scholar 

  50. Frutos P, Pabón C, Lastres JL, Frutos G. In vitro release of metociopramide from hydrophobic matrix tablets. Influence of hydrodynamic conditions on kinetic release parameters. Chem Pharm Bull. 2001. https://doi.org/10.1248/cpb.49.1267.

  51. Das S, Subuddhi U. Exploring poly (vinyl alcohol) hydrogels containing drug–cyclodextrin complexes as controlled drug delivery systems. J Appl Polym Sci. 2014;131.

  52. Anderson TW, Darling DA. Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann Math Stat. 1952;23:193–212.

    Article  Google Scholar 

  53. Breusch TS, Pagan AR. A simple test for heteroscedasticity and random coefficient variation. Econometrica: J Econ Soc. 1979;47:1287–94.

    Article  Google Scholar 

  54. Montgomery DC, Runger GC. Applied statistics and probability for engineers. John Wiley & Sons. 2011.

  55. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48:139–57. https://doi.org/10.1016/S0169-409X(01)00112-0.

    Article  CAS  PubMed  Google Scholar 

  56. Yadav IK, Jain DA. Formulation and evaluation of diclofenac sodium S.R. tablets using Linum usitatissimum seed mucilage Matrixing. 2015; 5674:367–372.

Download references

Acknowledgments

The authors would like to thank the Brazilian Government Agency Coordination for the Improvement of Higher Education Personnel (CAPES) for their support.

Funding

Brazilian Government agency Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, M.S., Rocha, L.C.S., Viçosa, A.L. et al. Developing and Featuring Matrix Tablets by Using Gross Linseed Mucilage as a Retardant Polymer. J Pharm Innov 17, 472–484 (2022). https://doi.org/10.1007/s12247-020-09523-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09523-4

Keywords

Navigation