Skip to main content

Advertisement

Log in

Climate change as the dominant driver of recent ecological changes in a semi-arid alpine lake from the Chinese Loess Plateau

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Semi-arid areas of northern China are under increasing pressures from anthropogenic activities and climate change. Although wetland areas in these drylands have experienced dramatic, unidirectional shifts in their ecological status in recent centuries, fundamental driving forces are poorly quantified. Here, we examine changes in sedimentary proxies (diatoms, spectrally-inferred chlorophyll-a, stable isotopes) preserved in a radiometrically-dated core from Tianchi Lake, an alpine lake within the margin of the East Asian Summer Monsoon (EASM) limit in China’s southwestern Loess Plateau. Our algal trends were compared with regional instrumental records, changes in EASM intensity, and with previously published paleolimnological data from this same lake to determine the principal drivers of regional ecological changes. We found no clear evidence that geochemical and biological proxies were strongly affected by deforestation and other human activities. Major environmental changes during the past ~ 200 years were found to be predominantly driven by climatic fluctuations, extreme precipitation events, and changes in EASM intensity. Prior to ~ 1965 CE, diatom assemblages indicate an oligotrophic, clear water state. Shifts in dominance between benthic Staurosirella pinnata and planktonic Lindavia comensis were likely controlled by ice-cover dynamics. Between ~ 1965 and 1980 CE an abrupt shift to a turbid water state during a period of extreme precipitation events was caused by excessive nutrient-laden soil erosion in the already susceptible deforested catchment. This turbid period was evidenced by a rapid increase to dominance of Achnanthidium minutissimum, a sharp decline in oligotrophic Lindavia comensis, increased primary production, and peaks in sediment grain size and SiO2 content. Post- ~ 1980 CE, we provide evidence that a shift towards planktonic diatom dominance can best be explained by changes in climate and EASM intensity, despite substantial nitrogen deposition in the region during the past few decades. Specifically, a drier and warmer climate together with weakened EASM wind strength resulted in decreased erosion and a return to a clear water state, coupled with enhanced thermal stability. Collectively, these observations expand our understanding of how changes in climate, extreme precipitation events, and fluctuations in EASM intensity influence semi-arid alpine lakes in northern China, as well as climate’s leading role in driving ecological change over the past two centuries, despite the intensification of human disturbances during recent decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Appleby P (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 1. Basin analysis, coring, and chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 171–203

    Chapter  Google Scholar 

  • Bachmann RW, Hoyer MV, Canfield DE (1999) The restoration of Lake Apopka in relation to alternative stable states. Hydrobiologia 394:219–232

    Article  Google Scholar 

  • Ballantyne AP, Brahney J, Fernandez D, Lawrence CL, Saros J, Neff JC (2011) Biogeochemical response of alpine lakes to a recent increase in dust deposition in the Southwestern, US. Biogeosciences 8:2689–2706

    Article  Google Scholar 

  • Barbour MT, Gerritsen J, Snyder BD, Stribling JB (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd edn. EPA, Report 841-B-99-002, Washington, DC

  • Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Terrestrial, algal and siliceous indicators. Springer, Dordrecht, pp 155–202

    Chapter  Google Scholar 

  • Beniston M, Diaz FD, Bradley RS (1997) Climatic change at high elevation sites: an overview. Clim Change 36:233–251

    Article  Google Scholar 

  • Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Article  Google Scholar 

  • Birks HJB (2010) Numerical methods for the analysis of diatom assemblage data. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, pp 23–54

    Chapter  Google Scholar 

  • Boutton TW (1991) Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments. In: Coleman DC, Fry B (eds) Carbon Isotopes Techniques. Academic Press Inc, San Diego, pp 173–185

    Chapter  Google Scholar 

  • Brinson MM, Malvárez AI (2002) Temperate freshwater wetlands: types, status, and threats. Environ Conserv 29:115–133

    Article  Google Scholar 

  • Brouwer J, Abdoul Kader HA, Sommerhalter T (2014) Wetlands help maintain wetland and dryland biodiversity in the Sahel, but that role is under threat: an example from 80 years of changes at Lake Tabalak in Niger. Biodiversity 15(2–3):203–219

    Article  Google Scholar 

  • Chen F, Yu Z, Yang M, Ito E, Wang S, Madsen DB, Huang X, Zhao Y, Sato T, Birks HJB, Boomer I, Chen J, An CB, Wuennemann B (2008) Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev 27:351–364

    Article  Google Scholar 

  • Chen F, Chen J, Holmes J, Boomer I, Austin P, Gates JB, Wang N, Brooks SJ, Zhang J (2010) Moisture changes over the last millennium in arid Central Asia: a review, synthesis and comparison with monsoon region. Quat Sci Rev 29:1055–1068

    Article  Google Scholar 

  • Chen J, Huang W, Jin L, Chen J, Chen S, Chen F (2018a) A climatological northern boundary index for the East Asian summer monsoon and its interannual variability. Sci China Earth Sci 61:13–22

    Article  Google Scholar 

  • Chen J, Liu J, Xie C, Chen G, Chen J, Zhang Z, Zhou A, Rühland KM, Smol JP, Chen F (2018b) Biogeochemical responses to climate change and anthropogenic nitrogen deposition from a ∼ 200-year record from Tianchi Lake, Chinese Loess Plateau. Quat Int 493:22–30

    Article  Google Scholar 

  • Chen F, Chen S, Zhang X, Smol JP, Wang X, Chen J, Gowan E, Qiang M, Dong G, Wang Z, Li Y, Xu Q, Liu J (2020) Asian dust-storm activities dominated by Chinese dynasty changes since 2000 BP. Nat Commun 11:920

    Google Scholar 

  • Cs S-K, Padisák J, Bíró P (2006) Temporal variability of Achnanthidium minutissimum (Kützing) Czarnecki and its relationship to chemical and hydrological features of the Torna-stream, Hungary. In: Ács E, Kiss KT, Padisák J, Szabó KÉ (eds) Program, abstracts & extended abstracts: 6th International Symposium on Use of Algae for monitoring Rivers. Magyar Algológiai Társaság, Göd, pp 139–145

    Google Scholar 

  • Cui S, Shi Y, Groffman PM, Schlesinger WH, Zhu Y (2013) Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proc Natl Acad Sci USA 110:2052–2057

    Article  Google Scholar 

  • Cuven S, Francus P, Lamoureux SF (2010) Estimation of grain size variability with micro X-ray fluorescence in laminated lacustrine sediments, Cape Bounty. Canadian High Arctic. J Paleolimnol 44(3):803–817

    Article  Google Scholar 

  • Depew DC, Houben AJ, Ozersky T, Hecky RE, Guildford SJ (2011) Submerged aquatic vegetation in Cook’s Bay, Lake Simcoe: assessment of changes in response to increased water transparency. J Great Lakes Res 37:72–82

    Article  Google Scholar 

  • Donat MG, Lowry AL, Alexander LV, O’Gorman PA, Maher N (2016) More extreme precipitation in the world’s dry and wet regions. Nature Clim Change 6:508–513

    Article  Google Scholar 

  • Escolar C, Martínez I, Bowker MA, Maestre FT (2012) Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. Philos Trans R Soc B 367:3087–3099

    Article  Google Scholar 

  • Fang K, Gou X, Chen F, Liu C, Davi N, Li J, Zhao Z, Li Y (2012) Tree-ring based reconstruction of drought variability (1615–2009) in the Kongtong Mountain area, northern China. Glob Planet Change 80–81:190–197

    Article  Google Scholar 

  • Fee EJ, Hecky RE, Kasian SEM, Cruikshank DR (1996) Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol Oceanogr 41:912–920

    Article  Google Scholar 

  • Fell SC, Carrivick JL, Kelly MG, Füreder L, Brown LE (2018) Declining glacier cover threatens the biodiversity of alpine river diatom assemblages. Glob Chang Biol 24:5828–5840

    Article  Google Scholar 

  • Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fore LS, Grafe C (2002) Using diatoms to assess the biological condition of large rivers in Idaho (USA). Freshw Biol 47(10):2015–2037

    Article  Google Scholar 

  • France R (1997) Land-water linkages: influences of riparian deforestation on lake thermocline depth and possible consequences for cold stenotherms. Can J Fish Aquat Sci 54(6):1299–1305

    Article  Google Scholar 

  • François R, Pilskaln CH, Altabet MA (1996) Seasonal variation in the nitrogen isotopic composition of sediment trap materials collected in Lake Malawi. In: Johnson TC, Odada EO (eds) The limnology, climatology and paleoclimatology of the East African Lakes. Gordon and Breach, Amsterdam, pp 241–250

    Google Scholar 

  • Gaiser EE, Deyrup N, Bachmann R, Battoe L, Swain H (2009) Effects of climate variability on transparency and thermal structure in subtropical, monomictic Lake Annie, Florida. Fund Appl Limnol 175:217–230

    Article  Google Scholar 

  • Grimm EC (1987) CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35

    Article  Google Scholar 

  • Grimm E (2015) Tilia and TGView 19 version 2.0.41. software. Springfield: Illinois State Museum, Research and Collection Center

  • Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432

    Article  Google Scholar 

  • Hobbs WO, Vinebrooke RD, Wolfe AP (2011) Biogeochemical responses of two alpine lakes to climate change and atmospheric deposition, Jasper and Banff National parks, Canadian Rocky Mountains. Can J Fish Aquat Sci 68:1480–1494

    Article  Google Scholar 

  • Hodell DA, Schelske CL (1998) Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol Oceanogr 43:200–214

    Article  Google Scholar 

  • Hodgson DA, Doran PT, Roberts D, McMinn A (2004) Paleolimnological studies from the Antarctic and sub Antarctic islands. In: Pienitz R, Douglas MSV, Smol JP (eds) Long-term environmental change in Arctic and Antarctic lakes. Developments in Palaeoenvironmental Research, vol 8. Springer, Dordrecht, pp 419–474

  • Holmgren M, Stapp P, Dickman CR, Gracia C, Graham S, Gutiérrez JR, Hice C, Jaksic F, Kelt DA, Letnic M, Lima M, López BC, Meserve PL, Milstead WB, Polis GA, Previtali MA, Richter M, Sabaté S, Squeo FA (2006) Extreme climatic events shape arid and semiarid ecosystems. Front Ecol Environ 4:87–95

    Article  Google Scholar 

  • Houser JN (2006) Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes. Can J Fish Aquat Sci 63:2447–2455

    Article  Google Scholar 

  • Huang J, Guan X, Ji F (2012) Enhanced cold-season warming in semi-arid regions. Atmos Chem Phys 12:5391–5398

    Article  Google Scholar 

  • Huang W, Feng S, Liu C, Chen J, Chen J, Chen F (2018) Changes of climate regimes during the last millennium and the twenty-first century simulated by the Community Earth System Model. Quat Sci Rev 180:42–56

    Article  Google Scholar 

  • Interlandi SJ, Kilham SS, Theriot EC (1999) Responses of phytoplankton to varied resource availability in large lakes of the greater Yellowstone ecosystem. Limnol Oceanogr 44:668–682

    Article  Google Scholar 

  • Karst TL, Smol JP (2000) Paleolimnological evidence of limnetic nutrient concentration equilibrium in a shallow, macrophyte-dominated lake. Aquat Sci 62:20–38

    Article  Google Scholar 

  • Karst-Riddoch TL, Pisaric MFJ, Smol JP (2005) Diatom responses to 20th century climate-related environmental changes in high-elevation mountain lakes of the northern Canadian Cordillera. J Paleolimnol 33:265–282

    Article  Google Scholar 

  • Klug JL, Richardson DC, Ewing HA, Hargreaves BR, Samal NR, Vachon D, Pierson DC, Lindsey AM, O’Donnell DM, Effler SW, Weathers KC (2012) Ecosystem effects of a tropical cyclone on a network of lakes in northeastern North America. Environ Sci Technol 46:11693–11701

    Article  Google Scholar 

  • Köster D, Pienitz R, Wolfe BB, Barry S, Foster DR, Dixit SS (2005) Paleolimnological assessment of human-induced impacts on Walden Pond (Massachusetts, USA) using diatoms and stable isotopes. Aquat Ecosyst Health Manag 8:117–131

    Article  Google Scholar 

  • Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Fischer, Stuttgart

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Li J, Zeng Q (2002) A unified monsoon index. Geophys Res Lett 29(8):1274

    Article  Google Scholar 

  • Li F, Liu J, Chen G, Kong L, Zhang X (2019) A rapid late Holocene lake ecosystem shift driven by climate change: evidence from the first cladoceran record from an alpine lake in northern China. Sci Bull 65(4):253–256

    Article  Google Scholar 

  • Liu J, Rühland KM, Chen J, Xu Y, ChenS Chen Q, Huang W, Xu Q, Chen F, Smol JP (2017) Aerosol-weakened summer monsoons decrease lake fertilization on the Chinese Loess Plateau. Nature Clim Change 7:190–194

    Article  Google Scholar 

  • Liu C, Huang W, Feng S, Chen JH, Zhou AF (2018) Spatiotemporal variations of aridity in China during 1961-2015: decomposition and attribution. Sci Bull 63:1187–1199

    Article  Google Scholar 

  • Lorch HJ, Ottow JCG (1986) Scanning electron microscopy of bacteria and diatoms attached to a submerged macrophyte in an increasingly polluted stream. Aquat Bot 26(86):377–384

    Article  Google Scholar 

  • Lotter AF, Bigler C (2000) Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquatic Sci 62:125–141

    Article  Google Scholar 

  • Luk SH, Chen H, Cai Q, Jia Z (1989) Spatial and temporal variations in the strength of loess soils, Lishi, China. Geoderma 45:303–317

    Article  Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 144:289–302

    Article  Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289

    Article  Google Scholar 

  • Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2. physical and geochemical methods, vol 2. Kluwer Academic Publishers, Dordrecht, pp 239–269

    Chapter  Google Scholar 

  • Michelutti N, Smol JP (2016) Visible spectroscopy reliably tracks trends in paleo-production. J Paleolimnol 56:253–265

    Article  Google Scholar 

  • Michelutti N, Douglas MS, Smol JP (2007) Evaluating diatom community composition in the absence of marked limnological gradients in the high Arctic: a surface sediment calibration set from Cornwallis Island (Nunavut, Canada). Polar Biol 30:1459–1473

    Article  Google Scholar 

  • Michelutti N, Blais JM, Cumming BF, Paterson AM, Rühland K, Wolfe AP, Smol JP (2010) Do spectrally inferred determinations of chlorophyll a reflect trends in lake trophic status? J Paleolimnol 43:205–217

    Article  Google Scholar 

  • Michelutti N, Cooke CA, Hobbs WO, Smol JP (2015) Climate-driven changes in lakes from the Peruvian Andes. J Paleolimnol 54:153–160

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and Human Well-Being: Synthesis. Island Press, Washington, DC

    Google Scholar 

  • Montoya JP (1994) Nitrogen isotope fractionation in the modern ocean: implications for the sedimentary record. In: Zahn R, Pedersen TF, Kaminski MA, Labeyrie L (eds) Carbon cycling in the Glacial Ocean: constraints on the ocean’s role in global change. Springer, Berlin, pp 259–279

    Chapter  Google Scholar 

  • Moser KA, Baron JS, Brahney J, Oleksy IA, Saros JE, Hundey EJ, Sadro SA, Kopacek J, Sommaruga R, Kainz MJ, Strecker AL, Chandra S, Walters DM, Preston DL, Michelutti N, Lepori F, Spaulding SA, Christianson KR, Melack JM, Smol JP (2019) Mountain lakes: eyes on global environmental change. Glob Planet Chang 178:77–95

    Article  Google Scholar 

  • Mulligan M (1998) Modelling the geomorphological impact of climatic variability and extreme events in a semi-arid environment. Geomorphology 24:59–78

    Article  Google Scholar 

  • Neukom R, Barboza LA, Erb MP, Shi F, Emile-Geay J, Evans MN, Franke J, Kaufman DS et al (2019) Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat Geosci 12:643–649

    Article  Google Scholar 

  • Özen A, Karapınar B, Kucuk I, Jeppesen E, Beklioglu M (2010) Drought-induced changes in nutrient concentrations and retention in two shallow Mediterranean lakes subjected to different degrees of management. Hydrobiologia 646:61–72

    Article  Google Scholar 

  • Perren BB, Massa C, Bichet V, Gauthier É, Mathieu O, Petit C, Richard H (2012) A paleoecological perspective on 1450 years of human impacts from a lake in southern Greenland. Holocene 22:1025–1034

    Article  Google Scholar 

  • R Development Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reavie ED, Sgro GV, Estepp LR, Bramburger AJ, Chraïbi VLS, Pillsbury RW, Cai M, Stow CA, Dove A (2016) Climate warming and changes in Cyclotella sensu lato in the Laurentian Great Lakes. Limnol Oceanogr 62:768–783

    Article  Google Scholar 

  • Rotenberg E, Yakir D (2010) Contribution of semi-arid forests to the climate system. Science 327:451–454

    Article  Google Scholar 

  • Rühland KM, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:2740–2754

    Article  Google Scholar 

  • Rühland KM, Paterson AM, Smol JP (2015) Lake diatom responses to warming: reviewing the evidence. J Paleolimnol 54:1–35

    Article  Google Scholar 

  • Saros JE, Stone JR, Pederson GT, Slemmons KE, Spanbauer T, Schliep A, Cahl D, Williamson CE, Engstrom DR (2012) Climate-induced changes in lake ecosystem structure inferred from coupled neo-and paleoecological approaches. Ecology 93:2155–2164

    Article  Google Scholar 

  • Saros JE, Northington RM, Anderson DS, Anderson JN (2016) A whole-lake experiment confirms a small centric diatom species as an indicator of changing lake thermal structure. Limnol Oceanogr Lett 1:27–35

    Article  Google Scholar 

  • Scheffer M (1998) Ecology of shallow lakes. Springer, Berlin

    Google Scholar 

  • Scheffler W, Nicklisch A, Schönfelder I (2005) Beiträge zur Morphologie, Ökologie und Ontogenie der planktischen Diatomee Cyclotella comensis Grunow. Untersuchungen an historischem und rezentem Material. Diatom Res 20:171–200

    Article  Google Scholar 

  • Schelske CL, Peplow A, Brenner M, Spence CN (1994) Low-background gamma counting applications for 210Pb dating of sediments. J Paleolimnol 10:115–128

    Article  Google Scholar 

  • Schmidt R, Weckström K, Lauterbach S, Tessadri R, Huber K (2012) North Atlantic climate impact on early late-glacial climate oscillations in the south-eastern Alps inferred from a multi-proxy lake sediment record. J Quat Sci 27:40–50

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Sienkiewicz E, Gąsiorowski M, Migała K (2017) Unusual reaction of diatom assemblage on climate changes during the last millennium: a record from Spitsbergen lake. J Paleolimnol 58:73–87

    Article  Google Scholar 

  • Simpson GL (2018) Modelling palaeoecological time series using generalised additive models. Front Ecol Evol 6

  • Smol JP (1988) Paleoclimate proxy data from freshwater arctic diatoms. Verh Int Verein Limnol 23:837–844

    Google Scholar 

  • Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Smol JP, Douglas MSV (2007) From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments. Front Ecol Environ 5:466–474

    Article  Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu MA, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA 102:4397–4402

    Article  Google Scholar 

  • Sochuliaková, L, Sienkiewicz E, Hamerlík L, Svitok M, Fidlerová D, Bitušík P (2018) Reconstructing the trophic history of an alpine lake (High Tatra Mts.) using subfossil diatoms: disentangling the effects of climate and human influence. Water Air Soil Pollut 229:289

  • Sollins P, Spycher G, Glassman CA (1984) Net nitrogen mineralization from light-and heavy-fraction forest soil organic matter. Soil Biol Biochem 16:31–37

    Article  Google Scholar 

  • Sommer U (1983) Nutrient competition between phytoplankton species in multispecies chemostat experiments. Archiv für Hydrobiologie 96:399–416

    Google Scholar 

  • Søndergaard M, Jeppesen E, Lauridsen TL, Skov C, Van Nes EH, Roijackers R, Lammens E, Portielje RO (2007) Lake restoration: successes, failures and long-term effects. J Appl Ecol 44:1095–1105

    Article  Google Scholar 

  • Stoermer EF, Wolin JA, Schelske CL, Conley DJ (1985) An assessment of ecological changes during the recent history of Lake Ontario based on siliceous algal microfossils preserved in the sediments. J Phycol 21:257–276

    Article  Google Scholar 

  • Talbot MR (2001) Nitrogen isotopes in paleolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments: Physcial and geochemical methods, vol 2. Kluwer, Dordrecht, pp 401–439

    Chapter  Google Scholar 

  • Talbot MR, Lærdal T (2000) The Late Pleistocene - Holocene palaeolimnology of Lake Victoria, East Africa, based upon elemental and isotopic analyses of sedimentary organic matter. J Paleolimnol 23:141–164

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CANOdraw for Windows user’s guide: software for canonical community ordination, version 5. Microcomputer Power, Ithaca

    Google Scholar 

  • Thies H, Tolotti M, Nickus U, Lami A, Musazzi S, Guilizzoni P, Rose NL, Yang H (2012) Interactions of temperature and nutrient changes: effects on phytoplankton in the Piburger See (Tyrol, Austria). Freshw Biol 57:2057–2075

    Article  Google Scholar 

  • Villanueva VD, Albariño RJ (1999) Feeding habit of Notoperla archiplatae (Plecoptera) larvae in a North Patagonia Andean stream, Argentina. Hydrobiologia 412:43–52

    Article  Google Scholar 

  • Wada E, Hattori A (1978) Nitrogen isotope effect in the assimilation of inorganic nitrogenous compounds by marine diatoms. Geomicrobiol J 1:85–101

    Article  Google Scholar 

  • Wang Z (2017) Boundary data of Loess Plateau region. J Glob Chang Data & Discov 1(1):113

    Article  Google Scholar 

  • Wang L, Shao M, Wang Q, Gale WJ (2006) Historical changes in the environment of the Chinese Loess Plateau. Environ Sci Policy 9:675–684

    Article  Google Scholar 

  • Wang L, Lu H, Liu J, Gu Z, Mingram J, Chu G, Li J, Rioual P, Negendank JFW, Han J, Liu T (2008) Diatom-based inference of variations in the strength of Asian winter monsoon winds between 17,500 and 6000 calendar years B.P. J Geophy Res 113: D21101

  • Wang L, Li J, Lu H, Gu Z, Rioual P, Hao Q, Mackay AW, Jiang W, Cai B, Xu B, Han J, Chu G (2012) The East-Asian winter monsoon over the last 15,000 years: its links to high-latitudes and tropical climate systems and complex correlation to the summer monsoon. Quat Sci Rev 32:131–142

    Article  Google Scholar 

  • Wang Q, Fan X, Wang M (2014) Recent warming amplification over high elevation regions across the globe. Clim Dyn 43:87–101

    Article  Google Scholar 

  • Wei W, Chen L, Fu B, Huang Z, Wu D (2007) The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. J Hydrol 335:247–258

    Article  Google Scholar 

  • Wen H, Wen R (2006) The forest change in Ningxia during different historical favor. The Change of the Plant and Animal in China during Different Historical Period. Chongqing Press, Chongqing. (In Chinese)

  • Werner P, Smol JP (2006) The distribution of the diatom Cyclotella comensis in Ontario (Canada) lakes. J Paleolimnol 130:373–391

    Google Scholar 

  • Williamson CE, Saros JE, Vincent W, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282

    Article  Google Scholar 

  • Wolfe A, Cooke C, Hobbs W (2006) Are current rates of atmospheric nitrogen deposition influencing lakes in the eastern Canadian Arctic? Arct Antarct Alp Res 38:465–476

    Article  Google Scholar 

  • Yan Y, Wang L, Li J, Li J, Zou Y, Zhang J, Li P, Liu Y, Xu B, Gu Z, Wan X (2018) Diatom response to climatic warming over the last 200 years: a record from Gonghai Lake, North China. Palaeogeogr Palaeoclimatol Palaeoecol 495:48–59

    Article  Google Scholar 

  • Yu K, Xu H, Lan J, Sheng E, Liu B, Wu H, Tan L, Yeager KM (2017) Climate change and soil erosion in a small alpine lake basin on the Loess Plateau, China. Earth Surf Process Land 42:1238–1247

    Article  Google Scholar 

  • Zhai P, Zhang X, Wan H, Pan X (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18:1096–1108

    Article  Google Scholar 

  • Zhang W, Zhou T (2019) Significant increases in extreme precipitation and the associations with global warming over the global land monsoon regions. J Clim 32(24):8465–8488

    Article  Google Scholar 

  • Zhang K, Zhao Y, Zhou A, Sun H (2010) Late Holocene vegetation dynamic and human activities reconstructed from lake records in western Loess Plateau, China. Quat Int 227:38–45

    Article  Google Scholar 

  • Zhang K, Zhao Y, Guo X (2011) Conifer stomata analysis in paleoecological studies on the Loess Plateau: an example from Tianchi Lake, Liupan Mountains. J Arid Environ 75:1209–1213

    Article  Google Scholar 

  • Zhang C, Zhao C, Zhou A, Zhang K, Wang R, Shen J (2019) Late Holocene lacustrine environmental and ecological changes caused by anthropogenic activities in the Chinese Loess Plateau. Quat Sci Rev 203:266–277

    Article  Google Scholar 

  • Zhao Y, Chen F, Zhou A, Yu Z, Zhang K (2010) Vegetation history, climate change and human activities over the last 6200 years on the Liupan Mountains in the southwestern Loess Plateau in central China. Palaeogeogr Palaeoclimatol Palaeoecol 293:197–205

    Article  Google Scholar 

  • Zhao G, Mu X, Wen Z, Wang F, Gao P (2013) Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad Dev 24:499–510

    Article  Google Scholar 

  • Zheng F, He X, Gao X, C-e Z, Tang K (2005) Effects of erosion patterns on nutrient loss following deforestation on the Loess Plateau of China. Agric Ecosyst Environ 108:85–97

    Article  Google Scholar 

  • Zhou A, Sun H, Chen F, Zhao Y, An C, Dong G, Wang Z, Chen J (2010) High-resolution climate change in mid-late Holocene on Tianchi Lake, Liupan Mountain in the Loess Plateau in central China and its significance. Chin Sci Bull 55:2118–2121

    Article  Google Scholar 

  • Zhu J, Liao H, Li J (2012) Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon. Geophys Res Lett 39:L09809

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank Wengang Kang and Jie Chen for helpful suggestions; Ruo Li and Haoran Jiao for assistance in preparing the figures; and Dr. Jan Bloemendal for English improvement on earlier drafts. This work was supported by the National Natural Science Foundation of China (Grants 41722105, 41790421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Liu, J., Rühland, K.M. et al. Climate change as the dominant driver of recent ecological changes in a semi-arid alpine lake from the Chinese Loess Plateau. J Paleolimnol 68, 39–57 (2022). https://doi.org/10.1007/s10933-020-00167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-020-00167-5

Keywords

Navigation