Skip to main content

Advertisement

Log in

Conjugated anisotropic gold nanoparticles through pterin derivatives for a selective plasmonic photothermal therapy: in vitro studies in HeLa and normal human endocervical cells

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

This article reports a simple one-step method for anisotropic gold nanoparticle synthesis for plasmonic photothermal therapy medical purposes, using 1,4-bis[(2-ethylhexyl) oxy]-1,4-dioxo-2-butanesulfonic acid-sodium (AOT) reverse micelles as nanoreactor, where under specific condition, AOT acts as both a reducing and stabilizing agent. Obtained AuNPs were functionalized by attaching compounds derived from 2-aminopteridin-4(3H)-ona (pterin family) such as (2S)-2-[(4-{[(2-amino-4-hydroxypteridin-6-yl) methyl] amino} phenyl) formamido] pentanedioic acid (folic acid/FA) and 2-amino-4-hydroxypteridine-6-carboxylic acid (PCA) in order to evaluate its effect as targets for folate receptor-mediated cellular uptake in HeLa and normal human endocervical cells. The nanoconjugates were characterized through transmission electron microscopy (TEM), ultraviolet-visible, fluorescence, and Fourier transform infrared spectroscopies. Results showed an effective photothermal response of AuNPs in solution under NIR exposure with concentration dependence and none effect of the conjugation. In vitro studies in HeLa cells showed a concentration-dependent cytotoxicity of AuNPs; thus, conjugation to biomolecules such as FA or PCA has provided a biocompatible coating onto AuNPs and made them highly cytocompatible. Results demonstrated despite AF and PCA are analogue molecules, the folate receptors in HeLa cells are specific, and the different chemical groups available on the AuNPs surface have drastically different cell membrane penetration properties. The specific cell uptake through folate receptor (FR) was observed for short treatment time, while for a long treatment time, other mechanisms as penetration or adhesion were shown involved. In the particular case, of AF@AuNPs, the cell uptake through FR-mediated endocytosis was evidenced to have been decreasing cell viability in 24% after 2 h of treatment and 5 min under NIR exposure. This was confirmed by morphological changes in cells, as well the selective uptake of the FA@AuNPs by HeLa cells compared to normal cells, due folate receptor overexpression in HeLa cells. The findings from this study will have implications in the chemical design of nanostructures for plasmonic photothermal therapy. The obtained results provide evidences at in vitro level to support the fact that AF@AuNP nanoconjugate will accumulate in the affected tissue preferentially through the EPR (enhanced permeability and retention) effect by folate-targeting mechanism which will significantly enhance the efficacy of NIR-induced local photothermal effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161. https://doi.org/10.1038/nrc1566

    Article  CAS  Google Scholar 

  2. Bhattacharya R, Patra CR, Earl A, Wang S, Katarya A, Lu L, Kizhakkedathu JN, Yaszemski MJ, Greipp PR, Mukhopadhyay D, Mukherjee P (2007) Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells, Nanomedicine Nanotechnology. Biol Med 3:224–238. https://doi.org/10.1016/j.nano.2007.07.001

    Article  CAS  Google Scholar 

  3. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228. https://doi.org/10.1007/s10103-007-0470-x

    Article  Google Scholar 

  4. Svaasand LO, Gomer CJ, Morinelli E (1990) On the physical rationale of laser induced hyperthermia. Lasers Med Sci 5:121–128

    Article  Google Scholar 

  5. Pekkanen AM, DeWitt MR, Rylander MN (2014) Nanoparticle enhanced optical imaging and phototherapy of cancer. J Biomed Nanotechnol 10:1677–1712. https://doi.org/10.1166/jbn.2014.1988

    Article  CAS  Google Scholar 

  6. Hainfeld JF, O’Connor MJ, Lin P, Qian L, Slatkin DN, Smilowitz HM (2014) Infrared-transparent gold nanoparticles converted by tumors to infrared absorbers cure tumors in mice by photothermal therapy. PLoS One 9:1–11. https://doi.org/10.1371/journal.pone.0088414

    Article  CAS  Google Scholar 

  7. Eastoe J, Hollamby MJ, Hudson L (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interf Sci 128–130:5–15. https://doi.org/10.1016/j.cis.2006.11.009

    Article  CAS  Google Scholar 

  8. López-Quintela MA (2003) Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Curr Opin Colloid Interface Sci 8:137–144. https://doi.org/10.1016/S1359-0294(03)00019-0

    Article  CAS  Google Scholar 

  9. Pileni MP (2006) Reverse micelles used as templates: a new understanding in nanocrystal growth. J Exp Nanosci 1:13–27. https://doi.org/10.1080/17458080500462075

    Article  CAS  Google Scholar 

  10. Maen MH, Nashaat NN (2008) Nanoparticle preparation using the single microemulsions scheme. Curr Nanosci 4:370–380. https://doi.org/10.2174/157341308786306116

    Article  Google Scholar 

  11. De Dios M, Barroso F, Tojo C, Blanco MC, López-Quintela MA (2005) Effects of the reaction rate on the size control of nanoparticles synthesized in microemulsions. Colloids Surfaces A Physicochem Eng Asp 270–271:83–87. https://doi.org/10.1016/j.colsurfa.2005.05.042

    Article  CAS  Google Scholar 

  12. Gutierrez JA, Falcone RD, Lopez-Quintela MA, Buceta D, Silber JJ, Correa NM (2014) On the investigation of the droplet–droplet interactions of sodium 1,4-Bis(2-ethylhexyl) sulfosuccinate reverse micelles upon changing the external solvent composition and their impact on gold nanoparticle synthesis. Eur J Inorg Chem 2014:2095–2102. https://doi.org/10.1002/ejic.201301612

    Article  CAS  Google Scholar 

  13. Gutierrez JA, Alejandra Luna M, Mariano Correa N, Silber JJ, Dario Falcone R, Luna MA, Correa NM, Silber JJ, Falcone RD (2015) The impact of the polar core size and external organic media composition on micelle-micelle interactions: the effect on gold nanoparticle synthesis. New J Chem 39:8887–8895. https://doi.org/10.1039/c5nj01126d

    Article  CAS  Google Scholar 

  14. Gutierrez JA, Cruz J, Rondón P, Jones N, Ortiz C, (2016) Small gold nanocomposites obtained in reverse micelles as nanoreactors. Effect of surfactant, optical properties and activity against Pseudomonas aeruginosa, New J. Chem. 40. https://doi.org/10.1039/c6nj02259f.

  15. Agazzi FM, Correa NM, Rodriguez J (2014) Molecular dynamics simulation of water/BHDC cationic reverse micelles. Structural characterization, dynamical properties, and influence of solvent on intermicellar interactions. Langmuir 30:9643–9653. https://doi.org/10.1021/la501964q

    Article  CAS  Google Scholar 

  16. Pileni MP (2007) Control of the size and shape of inorganic nanocrystals at various scales from nano to macrodomains. J Phys Chem C 111:9019–9038. https://doi.org/10.1021/jp070646e

    Article  CAS  Google Scholar 

  17. Lopez-Quintela MA, Rivas J, Blanco MC, Tojo C, (2007) Synthesis of nanoparticles in microemulsions, in: L.M. Liz-Marzán, P. V Kamat (Eds.), Nanoscale mater., Springer US, pp. 135–155. https://books.google.com.co/books?id=_NYLBwAAQBAJ.

  18. Silber JJ, Biasutti A, Abuin E, Lissi E (1999) Interactions of small molecules with reverse micelles. Adv Colloid Interf Sci 82:189–252. https://doi.org/10.1016/S0001-8686(99)00018-4

    Article  CAS  Google Scholar 

  19. De TK, Maitra A (1995) Solution behaviour of aerosol OT in non-polar solvents. Adv Colloid Interf Sci 59:95–193. https://doi.org/10.1016/0001-8686(95)80005-N

    Article  CAS  Google Scholar 

  20. Vanitha Kumari G, Ananth N, Asha TM, Rajan MAJ (2016) Synthesis and characterization of folic acid conjugated silver/gold nanoparticles for biomedical applications. Mater Today Proc 3:4215–4219. https://doi.org/10.1016/j.matpr.2016.11.099

    Article  Google Scholar 

  21. Zahr AS, de Villiers M, Pishko MV (2005) Encapsulation of drug nanoparticles in self-assembled macromolecular nanoshells. Langmuir 21:403–410. https://doi.org/10.1021/la0478595

    Article  CAS  Google Scholar 

  22. Kelemen LE (2006) The role of folate receptor α in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer 119:243–250. https://doi.org/10.1002/ijc.21712

    Article  CAS  Google Scholar 

  23. Murata S, Ichinose H, Urano F, (2007) Tetrahydrobiopterin and related biologically important pterins, Bioact Heterocycles II 127–171. https://doi.org/10.1007/7081_2007_061.

  24. Assaraf YG, Leamon CP, Reddy JA (2014) The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updat 17:89–95. https://doi.org/10.1016/j.drup.2014.10.002

    Article  Google Scholar 

  25. Shi H, Guo J, Li C, Wang Z (2015) A current review of folate receptor alpha as a potential tumor target in non-small-cell lung cancer. Drug Des Devel Ther 9:4989–4996. https://doi.org/10.2147/DDDT.S90670

    Article  CAS  Google Scholar 

  26. Kamen BA, Smith AK (2004) A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv Drug Deliv Rev 56:1085–1097. https://doi.org/10.1016/j.addr.2004.01.002

    Article  CAS  Google Scholar 

  27. Xia W, Low PS (2010) Folate-targeted therapies for cancer. J Med Chem 53:6811–6824. https://doi.org/10.1021/jm100509v

    Article  CAS  Google Scholar 

  28. Blach D, Correa NM, Silber JJ, Falcone RD (2011) Interfacial water with special electron donor properties: effect of water–surfactant interaction in confined reversed micellar environments and its influence on the coordination chemistry of a copper complex. J Colloid Interface Sci 355:124–130. https://doi.org/10.1016/j.jcis.2010.11.067

    Article  CAS  Google Scholar 

  29. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  30. Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 21:A.3B.1–A.3B.2. https://doi.org/10.1002/0471142735.ima03bs21

    Article  Google Scholar 

  31. Pansare V, Hejazi S, Faenza W, Prud’homme RK (2012) Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores and multifunctional nano carriers. Chem Mater 24:812–827. https://doi.org/10.1021/cm2028367

    Article  CAS  Google Scholar 

  32. Cavasino FP, Sbriziolo C, Liveri MLT, Fisica C (1998) Chemical reactivity in AOT microemulsions: kinetics of water replacement in a square-planar palladium (II) aquo complex by monoalkylthioureas. J Phys Chem B 5647:3143–3146

    Article  Google Scholar 

  33. García-Río L, Leis JR, Peña ME, Iglesias E (1993) Transfer of the nitroso group in water/AOT/isooctane microemulsions: intrinsic and apparent reactivity. J Phys Chem 97:3437–3442. https://doi.org/10.1021/j100115a057

    Article  Google Scholar 

  34. Kim T, Lee C-H, Joo S-W, Lee K (2008) Kinetics of gold nanoparticle aggregation: experiments and modeling. J Colloid Interface Sci 318:238–243. https://doi.org/10.1016/j.jcis.2007.10.029

    Article  CAS  Google Scholar 

  35. Hoppe CE, Lazzari M, Pardiñas-Blanco I, López-Quintela MA (2006) One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir. 22:7027–7034. https://doi.org/10.1021/la060885d

    Article  CAS  Google Scholar 

  36. Xu C, Li B, Du H, Kang F, Zeng Y (2008) Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method. J Power Sources 180:664–670. https://doi.org/10.1016/j.jpowsour.2008.02.029

    Article  CAS  Google Scholar 

  37. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862. https://doi.org/10.1021/cr0680282

    Article  CAS  Google Scholar 

  38. Peng S, McMahon JM, Schatz GC, Gray SK, Sun Y (2010) Reversing the size-dependence of surface plasmon resonances. Proc Natl Acad Sci U S A 107:14530–14534. https://doi.org/10.1073/pnas.1007524107

    Article  Google Scholar 

  39. Mogensen KB, Kneipp K (2014) Size-dependent shifts of plasmon resonance in silver nanoparticle films using controlled dissolution: monitoring the onset of surface screening effects. J Phys Chem C 118:28075–28083. https://doi.org/10.1021/jp505632n

    Article  CAS  Google Scholar 

  40. Chiang CL, Hsu MB, Lai LB (2004) Control of nucleation and growth of gold nanoparticles in AOT/Span80/isooctane mixed reverse micelles. J Solid State Chem 177:3891–3895. https://doi.org/10.1016/j.jssc.2004.07.003

    Article  CAS  Google Scholar 

  41. Bommarius AS, Holzwarth JF, Wang DIC, Hatton TA (1990) Coalescence and solubilizate exchange in a cationic four-component reversed micellar system. J Phys Chem 94:7232–7239. https://doi.org/10.1021/j100381a051

    Article  CAS  Google Scholar 

  42. Hirai T, Sato H, Komasawa I (1993) Mechanism of formation of titanium dioxide ultrafine particles in reverse micelles by hydrolysis of titanium tetrabutoxide. Ind Eng Chem Res 32:3014–3019. https://doi.org/10.1021/ie00024a009

    Article  CAS  Google Scholar 

  43. Schmidt J, Guesdon C, Schomäcker R (1999) Engineering aspects of preparation of nanocrystalline particles in microemulsions. J Nanopart Res 1:267–276. https://doi.org/10.1023/A:1010068903324

    Article  CAS  Google Scholar 

  44. Burrows ND, Vartanian AM, Abadeer NS, Grzincic EM, Jacob LM, Lin W, Li J, Dennison JM, Hinman JG, Murphy CJ (2016) Anisotropic nanoparticles and anisotropic surface chemistry. J Phys Chem Lett 7:632–641. https://doi.org/10.1021/acs.jpclett.5b02205

    Article  CAS  Google Scholar 

  45. Paramasivam G, Kayambu N, Rabel AM, Sundramoorthy AK, Sundaramurthy A (2017) Anisotropic noble metal nanoparticles: synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics. Acta Biomater 49:45–65. https://doi.org/10.1016/j.actbio.2016.11.066

    Article  CAS  Google Scholar 

  46. Seng G, Bolard J (1983) Circular dichroism studies in the near UV of ligand binding to chicken liver dihydrofolate reductase. Biochimie. 65:169–175. https://doi.org/10.1016/S0300-9084(83)80081-9

    Article  CAS  Google Scholar 

  47. Moorthy PN, Hayon E (1976) One-electron redox reactions of water-soluble vitamins. II. Pterin and folic acid. J Organomet Chem 41:1607–1613. https://doi.org/10.1021/jo00871a028

    Article  CAS  Google Scholar 

  48. Chen X, Xu X, Cao Z (2007) Theoretical study on the singlet excited state of pterin and its deactivation pathway. J Phys Chem A 111:9255–9262. https://doi.org/10.1021/jp0727502

    Article  CAS  Google Scholar 

  49. Nibbering ETJ, Fidder H, Pines E (2005) Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics. Annu Rev Phys Chem 56:337–367. https://doi.org/10.1146/annurev.physchem.56.092503.141314

    Article  CAS  Google Scholar 

  50. Dulkeith E, Ringler M, Klar TA, Feldmann J, Muñoz Javier A, Parak WJ (2005) Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett 5:585–589. https://doi.org/10.1021/nl0480969

    Article  CAS  Google Scholar 

  51. Fan C, Wang S, Hong JW, Bazan GC, Plaxco KW, Heeger AJ (2003) Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc Natl Acad Sci U S A 100:6297–6301. https://doi.org/10.1073/pnas.1132025100

    Article  CAS  Google Scholar 

  52. Swierczewska M, Lee S, Chen X (2011) The design and application of fluorophore-gold nanoparticle activatable probes. Phys Chem Chem Phys 13:9929–9941. https://doi.org/10.1039/C0CP02967J

    Article  CAS  Google Scholar 

  53. Devendiran RM, Chinnaiyan SK, Yadav NK, Moorthy GK, Ramanathan G, Singaravelu S, Sivagnanam UT, Perumal PT (2016) Green synthesis of folic acid-conjugated gold nanoparticles with pectin as reducing/stabilizing agent for cancer theranostics. RSC Adv 6:29757–29768. https://doi.org/10.1039/C6RA01698G

    Article  CAS  Google Scholar 

  54. Świsłocka R, Samsonowicz M, Regulska E, Lewandowski W (2006) Molecular structure of 4-aminobenzoic acid salts with alkali metals. J Mol Struct 792–793:227–238. https://doi.org/10.1016/j.molstruc.2005.10.060

    Article  CAS  Google Scholar 

  55. Kondo M, Nappa J, Ronayne KL, Stelling AL, Tonge PJ, Meech SR (2006) Ultrafast vibrational spectroscopy of the flavin chromophore. J Phys Chem B 110:20107–20110. https://doi.org/10.1021/jp0650735

    Article  CAS  Google Scholar 

  56. Li G, Magana D, Dyer RB (2012) Photoinduced electron transfer in folic acid investigated by ultrafast infrared spectroscopy. J Phys Chem B 116:3467–3475. https://doi.org/10.1021/jp300392a

    Article  CAS  Google Scholar 

  57. Castillo JJ, Rozo CE, Bertel L, Rindzevicius T, Mendez-Sanchez SC, Ortega FM, Boisen A (2016) Orientation of pterin-6-carboxylic acid on gold capped silicon nanopillars platforms: surface enhanced Raman spectroscopy and density functional theory studies. J Braz Chem Soc 27:971–977 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532016000500971&nrm=iso

    CAS  Google Scholar 

  58. Velgosova O, Čižmárová E, Málek J, Kavuličova J (2017) Effect of storage conditions on long-term stability of Ag nanoparticles formed via green synthesis. Int J Miner Metall Mater 24:1177–1182. https://doi.org/10.1007/s12613-017-1508-0

    Article  CAS  Google Scholar 

  59. Shi J, Wang L, Zhang J, Ma R, Gao J, Liu Y, Zhang C (2014) A tumor-targeting near-infrared laser-triggered drug delivery system based on GO @ Ag nanoparticles for chemo-photothermal therapy and X-ray imaging. Biomaterials 35:5847–5861. https://doi.org/10.1016/j.biomaterials.2014.03.042

    Article  CAS  Google Scholar 

  60. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B Biol 49:1–17. https://doi.org/10.1016/S1011-1344(98)00219-X

    Article  CAS  Google Scholar 

  61. Migliario M, Sabbatini M, Mortellaro C, Renò F (2018) Near infrared low-level laser therapy and cell proliferation: the emerging role of redox sensitive signal transduction pathways. J Biophotonics 11:e201800025. https://doi.org/10.1002/jbio.201800025

    Article  CAS  Google Scholar 

  62. Chen X, Tian F, Zhang X, Wang W (2013) Internalization pathways of nanoparticles and their interaction with a vesicle. Soft Matter 9:7592–7600. https://doi.org/10.1039/C3SM50931A

    Article  CAS  Google Scholar 

  63. Miao Q, Xu D, Wang Z, Xu L, Wang T, Wu Y, Lovejoy DB, Kalinowski DS, Richardson DR, Nie G, Zhao Y (2010) Amphiphilic hyper-branched co-polymer nanoparticles for the controlled delivery of anti-tumor agents. Biomaterials. 31:7364–7375. https://doi.org/10.1016/j.biomaterials.2010.06.012

    Article  CAS  Google Scholar 

  64. Feng Z, Ying Z, Ying L, Xueling C, Chunying C, Yuliang Z (n.d.) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 7:1322–1337. https://doi.org/10.1002/smll.201100001

  65. Yoo HS, Park TG (2004) Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin–PEG–folate conjugate. J Control Release 100:247–256. https://doi.org/10.1016/j.jconrel.2004.08.017

    Article  CAS  Google Scholar 

  66. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338:284–293. https://doi.org/10.1016/j.ab.2004.12.026

    Article  CAS  Google Scholar 

  67. Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, Yong E-L, Xu HE, Melcher K (2013) Structural basis for molecular recognition of folic acid by folate receptors. Nature. 500:486–489. https://doi.org/10.1038/nature12327 http://www.nature.com/nature/journal/v500/n7463/abs/nature12327.html#supplementary-information

    Article  CAS  Google Scholar 

  68. Meng H, Xia T, George S, Nel AE (2009) A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano 3:1620–1627. https://doi.org/10.1021/nn9005973

    Article  CAS  Google Scholar 

  69. Wang L, Liu Y, Li W, Jiang X, Ji Y, Wu X, Xu L, Qiu Y, Zhao K, Wei T, Li Y, Zhao Y, Chen C (2011) Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano Lett 11:772–780. https://doi.org/10.1021/nl103992v

    Article  CAS  Google Scholar 

  70. Wang L, Li Y, Zhou L (2010) Characterization of gold nanorods in vivo by integrated analytical techniques: their uptake, retention, and chemical forms. Anal Bioanal Chem 396:1105–1114. https://doi.org/10.1007/s00216-009-3302-y

    Article  CAS  Google Scholar 

  71. Nayak A, Satapathy SR, Das D, Siddharth S, Tripathi N, Bharatam PV, Kundu C (2016) Nanoquinacrine induced apoptosis in cervical cancer stem cells through the inhibition of hedgehog-GLI1 cascade: Role of GLI-1. Sci Rep 6:20600. https://doi.org/10.1038/srep20600

    Article  CAS  Google Scholar 

Download references

Acknowledgments

D.B. thanks Colciencias (Administrative Department of Science, Technology and Innovation) for a postdoctoral research fellowship (Es tiempo de volver) cooperation agreement no. FP44842-507-2014.

Funding

This study received financial support from the Universidad Industrial de Santander—UIS (projects 1819 and 2320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Blach.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blach, D., Alves De Souza, C.E., Méndez, S.C. et al. Conjugated anisotropic gold nanoparticles through pterin derivatives for a selective plasmonic photothermal therapy: in vitro studies in HeLa and normal human endocervical cells. Gold Bull 54, 9–23 (2021). https://doi.org/10.1007/s13404-020-00288-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-020-00288-9

Keywords

Navigation