Skip to main content
Log in

Darboux diagonalization of the spatial 3-metric in Kerr spacetime

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The astrophysical importance of the Kerr spacetime cannot be overstated. Of the currently known exact solutions to the Einstein field equations, the Kerr spacetime stands out in terms of its direct applicability to describing astronomical black hole candidates. In counterpoint, purely mathematically, there is an old classical result of differential geometry, due to Darboux, that all 3-manifolds can have their metrics recast into diagonal form. In the case of the Kerr spacetime the Boyer–Lindquist coordinates provide an explicit example of a diagonal spatial 3-metric. Unfortunately, as we demonstrate herein, Darboux diagonalization of the spatial 3-slices of the Kerr spacetime is incompatible with simultaneously putting the Kerr metric into unit-lapse form while retaining manifest axial symmetry. This no-go theorem is somewhat reminiscent of the no-go theorem to the effect that the spatial 3-slices of the Kerr spacetime cannot be chosen to be conformally flat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kerr, R.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  2. Kerr, R.: Gravitational collapse and rotation, published in: Quasi-stellar sources and gravitational collapse: including the proceedings of the First Texas Symposium on Relativistic Astrophysics, edited by Ivor Robinson, Alfred Schild, and E.L. Schücking (University of Chicago Press, Chicago, 1965), pp 99–102. The conference was held in Austin, Texas, from 16–18 December 1963

  3. Visser, M.: The Kerr spacetime: a brief introduction. arXiv:0706.0622 [gr-qc]. Published in [4]

  4. Wiltshire, D.L., Visser, M., Scott, S.M.: The Kerr spacetime: Rotating black holes in general relativity. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  5. O’Neill, B.: The geometry of Kerr black holes, (Peters, Wellesley, 1995). Reprinted (Dover, Mineloa 2014)

  6. Adler, R.J., Bazin, M., Schiffer, M.: Introduction to general relativity, 2nd ed. McGraw-Hill, New York (1975). [It is important to acquire the 1975 second edition, the 1965 first edition does not contain any discussion of the Kerr spacetime.]

  7. D’Inverno, R.: Introducing Einstein’s relativity. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  8. Hartle, J.: Gravity: an introduction to Einstein’s general relativity. Addison Wesley, San Francisco (2003)

    Google Scholar 

  9. Carroll, S.: An introduction to general relativity: spacetime and geometry. Addison Wesley, San Francisco (2004)

    MATH  Google Scholar 

  10. Wald, R.: General relativity. University of Chicago Press, Chicago (1984)

    Book  Google Scholar 

  11. Weinberg, S.: Gravitation and cosmology: principles and applications of the general theory of relativity. Wiley, Hoboken (1972)

    Google Scholar 

  12. Hobson, M.P., Estathiou, G.P., Lasenby, A.N.: General relativity: an introduction for physicists. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  13. Misner, C., Thorne, K., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  14. Hamilton, A.J., Lisle, J.P.: The River model of black holes. Am. J. Phys. 76, 519–532 (2008). https://doi.org/10.1119/1.2830526. arXiv:gr-qc/0411060 [gr-qc]

  15. Doran, C.: A new form of the Kerr solution. Phys. Rev. D 61, 067503 (2000). https://doi.org/10.1103/PhysRevD.61.067503. arXiv:gr-qc/9910099 [gr-qc]

  16. Natario, J.: Painlevé–Gullstrand coordinates for the Kerr solution. Gen. Rel. Grav. 41, 2579–2586 (2009). https://doi.org/10.1007/s10714-009-0781-2. arXiv:0805.0206 [gr-qc]

  17. Baines, J., Berry, T., Simpson, A., Visser, M.: Unit-lapse forms of the Kerr spacetime. arXiv:2008.03817 [gr-qc]

  18. Liberati, S., Tricella, G., Visser, M.: Towards a Gordon form of the Kerr spacetime. Class. Quant. Grav. 35(15), 155004 (2018). https://doi.org/10.1088/1361-6382/aacb75. arXiv:1803.03933 [gr-qc]

  19. Rajan, D., Visser, M.: Cartesian Kerr–Schild variation on the Newman–Janis trick. Int. J. Mod. Phys. D 26(14), 1750167 (2017). https://doi.org/10.1142/S021827181750167X. arXiv:1601.03532 [gr-qc]

  20. Thirring, H., Lense, J.: Über den Einfluss der Eigenrotation der Zentralkörperauf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie”, Physikalische Zeitschrift, Leipzig Jg. 19(8), 156–163 (1918). English translation by Bahram Mashoon, Friedrich W. Hehl, and Dietmar S. Theiss, “On the influence of the proper rotations of central bodies on the motions of planets and moons in Einstein’s theory of gravity”, General Relativity and Gravitation 16 (1984) 727–741

  21. Pfister, H.: On the history of the so-called Lense–Thirring effect. http://philsci-archive.pitt.edu/archive/00002681/01/lense.pdf

  22. Baines, J., Berry, T., Simpson, A., Visser, M.: Painlevé–Gullstrand form of the Lense–Thirring spacetime. arXiv:2006.14258 [gr-qc]

  23. Gaston, D.: Leçons sur les systèmes orthogonaux et les coordonnées curvilignes. Gauthier-Villars (1898)

  24. Pfahler Eisenhart, L.: Fields of parallel vectors in a Riemannian geometry. Trans. Am. Math. Soc. 27(4), 563–573 (1925)

    Article  MathSciNet  Google Scholar 

  25. DeTurck, D.M., Yang, D.: Existence of elastic deformations with prescribed principal strains and triply orthogonal systems. Duke Math. J. 51(2), 243–260 (1984)

    Article  MathSciNet  Google Scholar 

  26. Bryant, R.L., Chern, S.S., Gardner, R.B., Goldschmidt, H.L., Griths, P.A.: Exterior differential systems, Mathematical Sciences Research Institute Publications. Springer, New York (1991)

    Book  Google Scholar 

  27. Tod, K.P.: On choosing coordinates to diagonalize the metric. Class. Quant. Grav. 9(7), 1693–1705 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  28. Kowalski, O., Sekizawa, M.: Diagonalization of three-dimensional pseudo-Riemannian metrics. J. Geom. Phys. 74, 251–255 (2013). https://doi.org/10.1016/j.geomphys.2013.08.010

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Grant, J.D.E., Vickers, J.A.: Block diagonalization of four-dimensional metrics. Class. Quant. Grav. 26, 235014 (2009). https://doi.org/10.1088/0264-9381/26/23/235014. arXiv:0809.3327 [math.DG]

  30. Painlevé, P.: La mécanique classique et la théorie de la relativité. C. R. Acad. Sci. (Paris) 173, 677–680 (1921)

    ADS  MATH  Google Scholar 

  31. Painlevé, P.: La gravitation dans la mécanique de Newton et dans la mécanique d’Einstein. C. R. Acad. Sci. (Paris) 173, 873–886 (1921)

    MATH  Google Scholar 

  32. Gullstrand, A.: Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie. Arkiv för Matematik, Astronomi och Fysik. 16(8), 1–15 (1922)

    MATH  Google Scholar 

  33. Martel, K., Poisson, E.: Regular coordinate systems for Schwarzschild and other spherical space-times. Am. J. Phys. 69, 476–480 (2001). https://doi.org/10.1119/1.1336836. arXiv:gr-qc/0001069 [gr-qc]

  34. Valiente Kroon, J.A.: On the nonexistence of conformally flat slices in the Kerr and other stationary space-times. Phys. Rev. Lett. 92, 041101 (2004). https://doi.org/10.1103/PhysRevLett.92.041101. arXiv:gr-qc/0310048 [gr-qc]

  35. Valiente Kroon, J.A.: Asymptotic expansions of the Cotton-York tensor on slices of stationary space-times. Class. Quant. Grav. 21, 3237-3250 (2004). https://doi.org/10.1088/0264-9381/21/13/009. arXiv:gr-qc/0402033 [gr-qc]

  36. Visser, M.: Acoustic propagation in fluids: an unexpected example of Lorentzian geometry. arXiv:gr-qc/9311028 [gr-qc]

  37. Visser, M.: Acoustic black holes: horizons, ergospheres, and Hawking radiation. Class. Quant. Grav. 15, 1767–1791 (1998). https://doi.org/10.1088/0264-9381/15/6/024. arXiv:gr-qc/9712010 [gr-qc]

  38. Visser, M.: Acoustic black holes. arXiv:gr-qc/9901047 [gr-qc]

  39. Volovik, G.: Simulation of Painlevé–Gullstrand black hole in thin He-3-A film. JETP Lett. 69, 705–713 (1999). https://doi.org/10.1134/1.568079. arXiv:gr-qc/9901077 [gr-qc]

  40. Perez-Bergliaffa, S.E., Hibberd, K., Stone, M., Visser, M.: Wave equation for sound in fluids with vorticity. Phys. D 191, 121–136 (2004). https://doi.org/10.1016/j.physd.2003.11.007. arXiv:cond-mat/0106255 [cond-mat]

  41. Visser, M., Barceló, C., Liberati, S.: Analog models of and for gravity. Gen. Rel. Grav. 34, 1719–1734 (2002). https://doi.org/10.1023/A:1020180409214. arXiv:gr-qc/0111111 [gr-qc]

  42. Fischer, U.R., Visser, M.: On the space-time curvature experienced by quasiparticle excitations in the Painlevé-Gullstrand effective geometry. Ann. Phys. 304, 22–39 (2003). https://doi.org/10.1016/S0003-4916(03)00011-3. arXiv:cond-mat/0205139 [cond-mat]

  43. Novello, M., Visser, M., Volovik, G.: Artificial black holes. World Scientific, Singapore (2002)

    Book  Google Scholar 

  44. Barceló, C., Liberati, S., Visser, M.: Probing semiclassical analog gravity in Bose-Einstein condensates with widely tune-able interactions. Phys. Rev. A 68, 053613 (2003). https://doi.org/10.1103/PhysRevA.68.053613. arXiv:cond-mat/0307491 [cond-mat]

  45. Visser, M., Weinfurtner, S.E.C.: Vortex geometry for the equatorial slice of the Kerr black hole. Class. Quant. Grav. 22, 2493–2510 (2005). https://doi.org/10.1088/0264-9381/22/12/011. arXiv:gr-qc/0409014 [gr-qc]

  46. Barceló, C., Liberati, S., Visser, M.: Analogue gravity. Living Rev. Rel. 8, 12 (2005). https://doi.org/10.12942/lrr-2005-12. arXiv:gr-qc/0505065 [gr-qc]

  47. Liberati, S., Visser, M., Weinfurtner, S.: Analogue quantum gravity phenomenology from a two-component Bose–Einstein condensate. Class. Quant. Grav. 23, 3129–3154 (2006). https://doi.org/10.1088/0264-9381/23/9/023. arXiv:gr-qc/0510125 [gr-qc]

  48. Weinfurtner, S., Liberati, S., Visser, M.: Analogue model for quantum gravity phenomenology. J. Phys. A 39, 6807–6814 (2006). https://doi.org/10.1088/0305-4470/39/21/S83. arXiv:gr-qc/0511105 [gr-qc]

  49. Visser, M., Molina-París, C.: Acoustic geometry for general relativistic barotropic irrotational fluid flow. New J. Phys. 12, 095014 (2010). https://doi.org/10.1088/1367-2630/12/9/095014. arXiv:1001.1310 [gr-qc]

  50. Visser, M.: Survey of analogue spacetimes. Lect. Notes Phys. 870, 31–50 (2013). https://doi.org/10.1007/978-3-319-00266-8_2. arXiv:1206.2397 [gr-qc]

  51. Liberati, S., Schuster, S., Tricella, G., Visser, M.: Vorticity in analogue spacetimes. Phys. Rev. D 99(4), 044025 (2019). https://doi.org/10.1103/PhysRevD.99.044025. arXiv:1802.04785 [gr-qc]

  52. Schuster, S., Visser, M.: Boyer–Lindquist space-times and beyond: meta-material analogues. arXiv:1802.09807 [gr-qc]

  53. Visser, M., Barceló, C., Liberati, S., Sonego, S.: Small, dark, and heavy: But is it a black hole? PoS BHGRS, 010 (2008). https://doi.org/10.22323/1.075.0010. arXiv:0902.0346 [gr-qc]

  54. Visser, M.: Black holes in general relativity. PoS BHGRS, 001 (2008). https://doi.org/10.22323/1.075.0001. arXiv:0901.4365 [gr-qc]

  55. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Visser, M.: Phenomenological aspects of black holes beyond general relativity. Phys. Rev. D 98, 124009 (2018). arXiv:1809.08238 [gr-qc]

  56. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Pacilio, C., Visser, M.: On the viability of regular black holes. J. High Energ. Phys. 2018 (2018). arXiv:1805.02675 [gr-qc]

  57. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Visser, M.: Geodesically complete black holes. Phys. Rev. D 101, 084047 (2020). https://doi.org/10.1103/PhysRevD.101.084047. arXiv:1911.11200 [gr-qc]

  58. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Visser, M.: Opening the Pandora’s box at the core of black holes. Class. Quant. Grav. 37(14), 145005 (2020). https://doi.org/10.1088/1361-6382/ab8141. arXiv:1908.03261 [gr-qc]

  59. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Visser, M.: Causal hierarchy in modified gravity. JHEP (in press). arXiv:2005.08533 [gr-qc]

  60. Barausse, E., Berti, E., Hertog, T., Hughes, S.A., Jetzer, P., Pani, P., Sotiriou, T.P., Tamanini, N., Witek, H., Yagi, K., Yunes, N., et al.: Prospects for Fundamental Physics with LISA. https://doi.org/10.1007/s10714-020-02691-1 (GRG in press). arXiv:2001.09793 [gr-qc]

  61. Lobo, F.S.N., Simpson , A., Visser, M.: Dynamic thin-shell black-bounce traversable wormholes. Phys. Rev. D 101(12), 124035 (2020). https://doi.org/10.1103/PhysRevD.101.124035. arXiv:2003.09419 [gr-qc]

  62. Simpson, A., Martín-Moruno, P., Visser, M.: Vaidya spacetimes, black-bounces, and traversable wormholes. Class. Quant. Grav. 36(14), 145007 (2019). https://doi.org/10.1088/1361-6382/ab28a5. arXiv:1902.04232 [gr-qc]

  63. Simpson, A., Visser, M.: Black-bounce to traversable wormhole. JCAP 02, 042 (2019). https://doi.org/10.1088/1475-7516/2019/02/042. arXiv:1812.07114 [gr-qc]

  64. Boonserm, P., Ngampitipan, T., Simpson, A., Visser, M.: Exponential metric represents a traversable wormhole. Phys. Rev. D 98(8), 084048 (2018). https://doi.org/10.1103/PhysRevD.98.084048. arXiv:1805.03781 [gr-qc]

  65. Simpson , A., Visser, M.: Regular black holes with asymptotically Minkowski cores. Universe 6(1), 8 (2019). https://doi.org/10.3390/universe6010008. arXiv:1911.01020 [gr-qc]

  66. Berry, T., Lobo, F.S.N., Simpson, A., Visser, M.: Thin-shell traversable wormhole crafted from a regular black hole with asymptotically Minkowski core. Phys. Rev. D 102(6), 064054 (2020). https://doi.org/10.1103/PhysRevD.102.064054

    Article  ADS  MathSciNet  Google Scholar 

  67. Berry, T., Simpson, A., Visser, M.: Photon spheres, ISCOs, and OSCOs: Astrophysical observables for regular black holes with asymptotically Minkowski cores. arXiv:2008.13308 [gr-qc]

  68. Bardeen, O.J.M.: Non-singular general-relativistic gravitational collapse. In Proceedings of International Conference GR5, Tbilisi, USSR, p. 174 (1968)

  69. Hayward, S.A.: Formation and evaporation of regular black holes. Phys. Rev. Lett. 96, 031103 (2006). https://doi.org/10.1103/PhysRevLett.96.031103. arXiv:gr-qc/0506126

  70. Frolov, V.P.: Information loss problem and a black hole model with a closed apparent horizon. JHEP 1405, 049 (2014). https://doi.org/10.1007/JHEP05(2014)049. arXiv:1402.5446 [hep-th]

  71. Frolov, V.P., Zelnikov, A.: Quantum radiation from an evaporating nonsingular black hole. Phys. Rev. D 95(12), 124028 (2017). https://doi.org/10.1103/PhysRevD.95.124028. arXiv:1704.03043 [hep-th]

Download references

Acknowledgements

JB was supported by a MSc scholarship funded by the Marsden Fund, via a grant administered by the Royal Society of New Zealand. TB was supported by a Victoria University of Wellington MSc scholarship, and was also indirectly supported by the Marsden Fund, via a grant administered by the Royal Society of New Zealand. AS was supported by a Victoria University of Wellington PhD Doctoral Scholarship, and was also indirectly supported by the Marsden fund, via a grant administered by the Royal Society of New Zealand. MV was directly supported by the Marsden Fund, via a grant administered by the Royal Society of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Baines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix: some explicit metrics

A Appendix: some explicit metrics

In this appendix we list some of the explicit metrics utilized in the text.

1.1 A.1 Unit-lapse metrics

The general form for a unit-lapse metric is [17]:

$$\begin{aligned} \mathrm{d}s^2 = - dt^2 + h_{ij} (dx^i - v^i dt) (dx^j-v^j dt). \end{aligned}$$
(A.1)

Then

$$\begin{aligned} g_{ab}= & {} \left[ \begin{array}{c|c} -1 + (h^{ij} v_i v_j) &{} -v_j \\ \hline -v_i &{} h_{ij} \end{array}\right] _{ab}; \nonumber \\ \qquad \qquad g^{ab}= & {} \left[ \begin{array}{c|c} -1 &{} -v^j \\ \hline -v^i &{} h^{ij} - v^i v^j\end{array}\right] ^{ab}. \end{aligned}$$
(A.2)

Note \(\det (g_{ab})=-\det (h_{ij})\) and \(g^{tt}=-1\).

1.2 A.2 Lense–Thirring (Painlevé–Gullstrand version)

For the Painlevé–Gullstrand version of Lense–Thirring [22]:

$$\begin{aligned} \mathrm{d}s^2= & {} - d t^2 +\left( d r+\sqrt{2m\over r} dt\right) ^2\nonumber \\&+\, r^2 \left( {{d}}\theta ^2+\sin ^2\theta \left( {{d}}\phi - {2J\over r^3} dt\right) ^2\right) , \end{aligned}$$
(A.3)

Then

$$\begin{aligned} g_{ab} = \left[ \begin{array}{c|ccc} -1+{2m\over r} + {4 J^2\sin ^2\theta \over r^4} &{} \sqrt{2m\over r} &{} 0 &{} -{2J\sin ^2\theta \over r}\\ \hline \sqrt{2m\over r} &{} 1 &{} 0 &{} 0\\ 0&{} 0 &{} r^2 &{} 0\\ -{2J\sin ^2\theta \over r} &{} 0 &{} 0 &{} r^2\sin ^2\theta \\ \end{array} \right] _{ab}. \end{aligned}$$
(A.4)

Here \(h_{ij}\) is not just diagonal, it is flat 3-space.

$$\begin{aligned} g^{ab} = \left[ \begin{array}{c|ccc} -1&{} \sqrt{2m\over r} &{} 0 &{} -{2J\over r^3}\\ \hline \sqrt{2m\over r} &{} 1-{2m\over r} &{} 0 &{} \sqrt{2m\over r} {2J\over r^3}\\ 0&{} 0 &{} {1\over r^2} &{} 0\\ -{2J\over r^3} &{} \sqrt{2m\over r} {2J\over r^3} &{} 0 &{} {1\over r^2\sin ^2\theta } - {4J^2\over r^6}\\ \end{array} \right] ^{ab}. \end{aligned}$$
(A.5)

Note this is unit lapse, \(g^{tt}=-1\).

1.3 A.3 Boyer–Lindquist

The standard form for the Boyer–Lindquist version of Kerr is:

$$\begin{aligned} (g_{ab})_{BL} = {\left[ \begin{array}{c|cc|c} - 1+{2mr\over \rho ^2} &{} 0 &{} 0 &{} -{2mar\sin ^2\theta \over \rho ^2}\\ \hline 0&{}{\rho ^2\over \Delta } &{}0&{}0\\ 0&{}0&{}{\rho ^2}&{}0\\ \hline - {2mar\sin ^2\theta \over \rho ^2}&{}0&{} 0&{} \Sigma \sin ^2\theta \end{array}\right] }_{ab}. \end{aligned}$$
(A.6)

Note \(h_{ij}\) is diagonal.

$$\begin{aligned} (g^{ab})_{BL} = {\left[ \begin{array}{c|cc|c} - 1-{2mr(r^2+a^2)\over \rho ^2\Delta } &{} 0 &{} 0 &{} -{2mar\over \rho ^2\Delta }\\ \hline 0&{}{\Delta \over \rho ^2} &{}0&{}0\\ 0&{}0&{}{1\over \rho ^2}&{}0\\ \hline - {2mar\over \rho ^2\Delta }&{}0&{} 0&{} {1-2mr/\rho ^2\over \Delta \sin ^2\theta } \end{array}\right] }^{ab}. \end{aligned}$$
(A.7)

Here \(\rho ^2=r^2+a^2\cos ^2\theta \), and \(\Delta =r^2+a^2-2mr\), while \(\Sigma = r^2+a^2 + {2mra^2\over \rho ^2} \sin ^2\theta \).

Note this is not unit lapse, \(g^{tt}\ne -1\).

1.4 A.4 Boyer–Lindquist-rain

For the Boyer–Lindquist-rain version of the Kerr metric \((g_{ab})_{\hbox {BL-rain}}\) we have [17]:

$$\begin{aligned} {\left[ \begin{array}{c|cc|c} - 1+{2mr\over \rho ^2} &{} \left( 1-{2mr\over \rho ^2}\right) {\sqrt{2mr(r^2+a^2)}\over \Delta } &{} 0 &{} -{2mar\sin ^2\theta \over \rho ^2}\\ \hline \left( 1-{2mr\over \rho ^2}\right) {\sqrt{2mr(r^2+a^2)}\over \Delta }&{} {\rho ^2\over \Delta } - \left( 1-{2mr\over \rho ^2}\right) {2mr(r^2+a^2)\over \Delta ^2} &{}0&{}{2mar\sin ^2\theta \over \rho ^2} {\sqrt{2mr(r^2+a^2)}\over \Delta } \\ 0&{}0&{}{\rho ^2}&{}0\\ \hline - {2mar\sin ^2\theta \over \rho ^2}&{}{2mar\sin ^2\theta \over \rho ^2} {\sqrt{2mr(r^2+a^2)}\over \Delta } &{} 0&{} \Sigma \sin ^2\theta \end{array}\right] }_{ab} \end{aligned}$$
(A.8)

Note \(h_{ij}\) is not diagonal.

For the inverse metric

$$\begin{aligned} (g^{ab})_{\hbox {BL-rain}}= {\left[ \begin{array}{c|cc|c} - 1 &{} {\sqrt{2mr(r^2+a^2)}\over \rho ^2} &{} 0 &{} -{2mar\over \rho ^2\Delta }\\ \hline {\sqrt{2mr(r^2+a^2)}\over \rho ^2} &{}{\Delta \over \rho ^2} &{}0&{}0\\ 0&{}0&{}{1\over \rho ^2}&{}0\\ \hline - {2mar\over \rho ^2\Delta }&{}0&{} 0&{} {1-2mr/\rho ^2\over \Delta \sin ^2\theta } \end{array}\right] }^{ab}. \end{aligned}$$
(A.9)

Note this is unit lapse, \(g^{tt}=-1\). Oddly the spatial part of the inverse metric \(g^{ij}\) is diagonal, but this is not the same as saying \(h_{ij}\) is diagonal.

1.5 A.5 Eddington–Finklestein-rain

In Eddington–Finkelstein-rain coordinates the covariant metric is given by [17]:

$$\begin{aligned} (g_{ab})_{\hbox {EF-rain}}= {\left[ \begin{array}{c|cc|c} - 1+{2mr\over \rho ^2} &{} g_{tr} &{} 0 &{}- {2mar\over \rho ^2}\sin ^2\theta \\ \hline g_{tr} &{}g_{rr} &{}0&{}g_{r\phi }\\ 0&{}0&{}\rho ^2&{}0\\ \hline -{2mar\over \rho ^2}\sin ^2\theta &{}g_{r\phi }&{}0&{} \Sigma \sin ^2\theta \end{array}\right] }_{ab} \end{aligned}$$
(A.10)

subject to the relatively messy results that

$$\begin{aligned} g_{rr}= & {} 1+ {a^2\sin ^2\theta (2mr/\rho ^2) \over (r^2+a^2)(1+ \sqrt{2mr/(r^2+a^2)})^2}; \end{aligned}$$
(A.11)
$$\begin{aligned} g_{tr}= & {} { {2mr/\rho ^2} + \sqrt{2mr/(r^2+a^2)} \over 1+ \sqrt{2mr/(r^2+a^2)}}; \end{aligned}$$
(A.12)
$$\begin{aligned} g_{r\phi }= & {} -a \sin ^2\theta \left( 1 +{2mr/\rho ^2} + \sqrt{2mr/(r^2+a^2)} \over 1 + \sqrt{2mr/( r^2+a^2)}\right) . \end{aligned}$$
(A.13)

Note \(h_{ij}\) is not diagonal. The inverse metric is much simpler

$$\begin{aligned} (g^{ab})_{\hbox {EF-rain}}= {\left[ \begin{array}{c|cc|c} - 1&{}{\sqrt{2mr(r^2+a^2)}\over \rho ^2}&{} 0 &{} {\sqrt{2mra^2/(r^2+a^2)}\over \rho ^2 (1+\sqrt{2mr/(r^2+a^2)})}\\ \hline {\sqrt{2mr(r^2+a^2)}\over \rho ^2}&{} {\Delta \over \rho ^2} &{}0&{} {a\over \rho ^2}\\ 0&{}0&{}{1\over \rho ^2}&{}0\\ \hline {\sqrt{2mra^2/(r^2+a^2)}\over \rho ^2 (1+\sqrt{2mr/(r^2+a^2)})}&{} {a\over \rho ^2}&{} 0&{} {1\over \rho ^2\sin ^2\theta } \end{array}\right] }^{ab}. \end{aligned}$$
(A.14)

Note this is unit lapse, \(g^{tt}=-1\).

1.6 A.6 Doran

The Doran metric is [15, 17]

$$\begin{aligned} (g_{ab})_{{\mathrm {Doran}}} = \left[ \begin{array}{c|cc|c} -1 +{2mr\over \rho ^2} &{} \sqrt{2mr\over a^2+r^2} &{} 0 &{} -{2mar\sin ^2\theta \over \rho ^2}\\ \hline \sqrt{2mr\over a^2+r^2} &{} {\rho ^2\over r^2+a^2}&{} 0 &{} -a\sqrt{2mr\over a^2+r^2} \sin ^2\theta \\ 0 &{}0 &{} \rho ^2&{} 0\\ \hline -{2mar\sin ^2\theta \over \rho ^2} &{} -a\sqrt{2mr\over a^2+r^2} \sin ^2\theta &{} 0 &{} \Sigma \sin ^2\theta \end{array}\right] _{ab}. \end{aligned}$$
(A.15)

Note \(h_{ij}\) is not diagonal.

For the inverse metric

$$\begin{aligned} (g^{ab})_{{\mathrm {Doran}}} = \left[ \begin{array}{c|cc|c} -1 &{} {\sqrt{2mr(a^2+r^2)}\over \rho ^2} &{} 0 &{} 0\\ \hline {\sqrt{2mr(a^2+r^2)}\over \rho ^2} &{} {\Delta \over \rho ^2}&{} 0 &{} {a\sqrt{2mr\over a^2+r^2} \over \rho ^2}\\ 0 &{}0 &{} {1\over \rho ^2} &{} 0\\ \hline 0 &{} {a\sqrt{2mr\over a^2+r^2} \over \rho ^2} &{} 0 &{} {1\over (a^2+r^2) \sin ^2\theta } \end{array}\right] ^{ab}. \end{aligned}$$
(A.16)

Note this is unit lapse, \(g^{tt}=-1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baines, J., Berry, T., Simpson, A. et al. Darboux diagonalization of the spatial 3-metric in Kerr spacetime. Gen Relativ Gravit 53, 3 (2021). https://doi.org/10.1007/s10714-020-02765-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02765-0

Keywords

Navigation