Skip to main content
Log in

Absorption of protein in teleosts: a review

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Teleost is a widely diverse group of fishes and so do their feeding habits. From aquaculture points of view, there have been un-interrupted efforts to optimize feeding rates with protein as the chief ingredients in the supplementary diet. However, knowledge on its protein absorption is incomplete so far, to acquire absolute feeding design to mobilize enhanced production of animal-source protein as fish biomass. In this review, the variable protein absorption across digestive tract (DT) in this group of fish has been highlighted. Emphasis is given to outline how DT components, like enterocyte specific absorptive mechanisms, are different in anterior and posterior regions of DT or from the absorptive transporter system. The existence of a transporter-based absorption mechanism brings more variability in the protein absorption in teleosts. At least two such transport systems (Na+-dependent and Na+-independent) with within-system differences impart more variability to protein absorption. Further, shifting from one stage to another stage of development involves considerable modification of the protein absorptive mechanism in teleosts. Gut microbes may also indirectly facilitate protein absorption in teleosts. Overall, the present review projects a comprehensive understanding of the protein absorption in teleosts that will help to strategize the modulation of feeding technology in fish culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availability

Data are available as shown in the article.

References

  • Agbo NW, Madalla N, Jauncey K (2011) Effects of dietary cottonseed meal protein levels on growth and feed utilization of Nile tilapia, Oreochromis niloticus L. J Appl Sci Environ 15(2):235–239

  • Akayli T, Erkan M, Çanak Ö, Ürkü Ç (2017) Formation of pinocytic activity in cultured common dentex (Dentex dentex) larvae intestine. Isr J Aquacult Bamidgeh 69:1–7

  • Ambardekar AA, Reigh RC, Williams MB (2009) Absorption of amino acids from intact dietary proteins and purified amino acid supplements follows different time-courses in channel catfish (Ictalurus punctatus). Aquaculture 291:179–187

    Article  CAS  Google Scholar 

  • Amberg JJ, Myr C, Kamisaka Y, Jordal AE, Rust MB, Hardy RW, Koedijk R, Rønnestad I (2008) Expression of the oligopeptide transporter, PepT1, in larval Atlantic cod (Gadus morhua). Comp Biochem Physiol B 150:177–182

    Article  CAS  PubMed  Google Scholar 

  • Askarian F, Sperstad S, Merrifield DL, Arun Kumar R, Ringø E (2013) The effect of different feeding regimes on enzyme activities of gut microbiota in Atlantic cod (Gadus morhua L.). Aquac Res 44:841–846

  • Bakke AM, Glover C, Krogdahl Å (2010) 2-Feeding, digestion and absorption of nutrients. Fish Physiol 30:57–110

  • Bakke-McKellep AM, Nordrum S, Krogdahl Å, Buddington RK (2000) Absorption of glucose, amino acids, and dipeptides by the intestines of Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 22:33–44

    Article  CAS  Google Scholar 

  • Balocco C, Bogé G, Roche H (1993) Neutral amino acid transport by marine fish intestine: role of the side chain. J Comp Physiol B 163:340–347

    Article  CAS  Google Scholar 

  • Banerjee G, Ray AK (2017) Bacterial symbiosis in the fish gut and its role in health and metabolism. Symbiosis 72(1):1–11

  • Banerjee G, Mukherjee S, Bhattacharya S, Ray AK (2016) Purification and characterization of extracellular protease and amylase produced by the bacterial strain, Corynebacterium alkanolyticum ATH3 isolated from fish gut. Arab J Sci Eng 41:9–16

    Article  CAS  Google Scholar 

  • Banerjee G, Ray AK (2017) Bacterial symbiosis in the fish gut and its role in health and metabolism. Symbiosis 72:1–11

    Article  CAS  Google Scholar 

  • Bauer W, Prentice-Hernandez C, Tesser MB, Wasielesky JW, Poersch LH (2012) Substitution of fishmeal with microbial floc meal and soy protein concentrate in diets for the pacific white shrimp Litopenaeus vannamei. Aquaculture 342:112–116

    Article  Google Scholar 

  • Bogé G, Roche H, Balocco C (2002) Amino acid transport by intestinal brush border vesicles of a marine fish Boops salpa. Comp Biochem Physiol B Biochem Mol Biol 131:19–26

    Article  PubMed  Google Scholar 

  • Borlongan IG, Eusebio PS, Welsh T (2003) Potential of feed pea (Pisum sativum) meal as a protein source in practical diets for milkfish (Chanos chanos Forsskal). Aquaculture 225:89–98

    Article  Google Scholar 

  • Brezas A, Hardy RW (2020) Improved performance of a rainbow trout selected strain is associated with protein digestion rates and synchronization of amino acid absorption. Sci Rep 10:1–12

    Article  Google Scholar 

  • Bröer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 9(1):343–373

  • Bröer S, Palacin M (2011) The role of amino acid transporters in inherited and acquired diseases. Biochem J 436:193–211

    Article  PubMed  Google Scholar 

  • Buddington RK, Chen JW, Diamond J (1987) Genetic and phenotypic adaptation of intestinal nutrient transport to diet in fish. J Physiol Lond 393:261–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahu C, Infante JZ (2001) Substitution of live food by formulated diets in marine fish larvae. Aquaculture 200:161–180

    Article  Google Scholar 

  • Campos C, Castanheira MF, Engrola S, Valente LM, Fernandes JM, Conceição LE (2013) Rearing temperature affects Senegalese sole (Solea senegalensis) larvae protein metabolic capacity. Fish Physiol Biochem 39:1485–1496

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti R, Sharma JG (2005) Digestive physiology of fish larvae during ontogenic development: a brief overview. Indian J Anim Sci 75(11):1337–1347

  • Christensen HN (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70:43–77

    Article  CAS  PubMed  Google Scholar 

  • Clements KD, Angert ER, Montgomery WL, Choat JH (2014) Intestinal microbiota in fishes: what's known and what's not. Mol Ecol 23:1891–1898

    Article  PubMed  Google Scholar 

  • Clements KD, Raubenheimer D, Choat JH (2009) Nutritional ecology of marine herbivorous fishes: ten years on. Funct Ecol 23:79–92

    Article  Google Scholar 

  • Collie NL, Ferraris RP (1995) Chapter 9 Nutrient fluxes and regulation in fish intestine. Biochemistry and Molecular Biology of Fishes 4:221–239

  • Con P, Nitzan T, Cnaani A (2017) Salinity-dependent shift in the localization of three peptide transporters along the intestine of the Mozambique tilapia (Oreochromis mossambicus). Front Physiol 8:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Concha MI, Santander C, Villanueva J, Amthauer R (2002) Specific binding of the endocytosis tracer horseradish peroxidase to intestinal fatty acid-binding protein (I-FABP) in apical membranes of carp enterocytes. J Exp Zool 293:541–550

    Article  CAS  PubMed  Google Scholar 

  • Coyle SD, Mengel GJ, Tidwell JH, Webster CD (2004) Evaluation of growth, feed utilization, and economics of hybrid tilapia, Oreochromis niloticus× Oreochromis aureus, fed diets containing different protein sources in combination with distillers dried grains with solubles. Aquac Res 35:365–370

    Article  Google Scholar 

  • Dabrowski K (1986) Protein digestion and amino acid absorption along the intestine of the common carp (Cyprinus carpio L.) a stomachless fish: an in vivo study. Reprod Nutr Dev 26:755–768

    Article  CAS  PubMed  Google Scholar 

  • Dabrowski K, Portella MC (2006) In: Val AL Almeida-Val VMF, Randall DJ (eds) The physiology of tropical fishes. Elsevier, London, pp 155–223

    Google Scholar 

  • Deplano M, Diaz JP, Connes R, Kentouri-Divanach M, Cavalier F (1991) Appearance of lipid-absorption capacities in larvae of the sea bass Dicentrarchus labrax during transition to the exotrophic phase. Mar Biol 108:361–371

    Article  CAS  Google Scholar 

  • Dey A, Ghosh K, Hazra N (2016) Evaluation of extracellular enzyme-producing autochthonous gut bacteria in walking catfish, Clarias batrachus (L.). J Fish 4:345–352

    Article  CAS  Google Scholar 

  • Engrola S, Figueira L, Conceição LE, Gavaia PJ, Ribeiro L, Dinis MT (2009) Co-feeding in Senegalese sole larvae with inert diet from mouth opening promotes growth at weaning. Aquaculture 288:264–272

    Article  Google Scholar 

  • Fawole FJ, Sahu NP, Jain KK, Gupta S, Rajendran KV, Shamna N, Poojary N (2017) Haemato-biochemical, non-specific immunity, antioxidant capacity and histopathological changes in Labeo rohita fingerlings fed rubber protein isolate. Fish Physiol Biochem 43:677–690

    Article  CAS  PubMed  Google Scholar 

  • Ferraris RP, Ahearn GA (1983) Intestinal glucose transport in carnivorous and herbivorous marine fishes. J Comp Physiol 152:79–90

    Article  CAS  Google Scholar 

  • Finn RN, Fyhn HJ (2010) Requirement for amino acids in ontogeny of fish. Aquac Res 41:684–716

    Article  CAS  Google Scholar 

  • Finn RN, Rønnestad I, van der Meeren T, Fyhn HJ (2002) Fuel and metabolic scaling during the early life stages of Atlantic cod Gadus morhua. Mar Ecol Prog Ser 243:217–234

    Article  Google Scholar 

  • Gamboa-Delgado J, Le Vay L, Fernández-Díaz C, Cañavate P, Ponce M, Zerolo R, Manchado M (2011) Effect of different diets on proteolytic enzyme activity, trypsinogen gene expression and dietary carbon assimilation in Senegalese sole (Solea senegalensis) larvae. Comp Biochem Physiol B 158:251–258

    Article  PubMed  Google Scholar 

  • Ghosh K, Sen SK, Ray AK (2002) Growth and survival of rohu, Labeo rohita (Hamilton) spawn [fish larvae] fed diets supplemented with fish intestinal microflora. Acta Ichthyol Piscat 32:83–92

    Article  Google Scholar 

  • Glover CN, Wood CM (2008) Histidine absorption across apical surfaces of freshwater rainbow trout intestine: mechanistic characterization and the influence of copper. J Membr Biol 221:87–95

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves AF, Castro LFC, Pereira-Wilson C, Coimbra J, Wilson JM (2007) Is there a compromise between nutrient uptake and gas exchange in the gut of Misgurnus anguillicaudatus an intestinal air-breathing fish? Comp Biochem Phys D 2:345–355

    Google Scholar 

  • Hakim Y, Harpaz S, Uni Z (2009) Expression of brush border enzymes and transporters in the intestine of European sea bass (Dicentrarchus labrax) following food deprivation. Aquaculture 290:110–115

    Article  CAS  Google Scholar 

  • Hardy RW (2010) Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac Res 41:770–776

    Article  CAS  Google Scholar 

  • Hernández MG, Lozano MT, Elbal MT, Agulleiro B (2001) Development of the digestive tract of sea bass (Dicentrarchus labrax L). Light and electron microscopic studies. Anat Embryol 204:39–57

    Article  Google Scholar 

  • Infante JZ, Cahu CL (2001a) Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Physiol C Toxicol Pharmacol 130:477–487

    Article  Google Scholar 

  • Infante JZ, Cahu CL (2001b) Partial substitution of di and tri peptides for native proteins in sea bass diet improves Dicentrarchus labrax larval development. J Nutr 129:1195–1200

    Google Scholar 

  • Jiang J, Xu S, Feng L, Liu Y, Jiang W, Wu P, Wang F, Zhao Y, Zhou X (2018) Lysine and methionine supplementation ameliorates high inclusion of soybean meal inducing intestinal oxidative injury and digestive and antioxidant capacity decrease of yellow catfish. Fish Physiol Biochem 44(1):319–328

  • Jiang WD, Hu K, Zhang JX, Liu Y, Jiang J, Wu P, Zhao J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L (2015) Soyabean glycinin depresses intestinal growth and function in juvenile Jian carp (Cyprinus carpio var Jian): protective effects of glutamine. Br J Nutr 114:1569–1583

    Article  CAS  PubMed  Google Scholar 

  • Jutfelt F, Olsen RE, Björnsson BT, Sundell K (2007) Parr-smolt transformation and dietary vegetable lipids affect intestinal nutrient uptake barrier function and plasma cortisol levels in Atlantic salmon. Aquaculture 273:298–311

    Article  CAS  Google Scholar 

  • Kar N, Ghosh K (2008) Enzyme producing bacteria in the gastrointestinal tracts of Labeo rohita (Hamilton) and Channa punctatus (Bloch). Turk J Fish Aquat Sci 8:115–120

    Google Scholar 

  • Kelly RH, Yancey PH (1999) High contents of trimethylamine oxide correlating with depth in deep-sea teleost fishes, skates, and decapod crustaceans. Biol Bull 196:18–25

    Article  CAS  PubMed  Google Scholar 

  • Khan MSK, Siddique MAM, Zamal H (2013) Replacement of fish meal by plant protein sources in Nile tilapia (Oreochromis niloticus) diet: growth performance and utilization. Iran J Fish Sci 12:864–872

    Google Scholar 

  • Kokou F, Fountoulaki E (2018) Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients. Aquaculture 495:295–310

    Article  CAS  Google Scholar 

  • Kotzamanis YP, Gisbert E, Gatesoupe FJ, Infante JZ, Cahu C (2007) Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comp Biochem Physiol A 147:205–214

    Article  CAS  Google Scholar 

  • Kramer DL, Bryant MJ (1995) Intestine length in the fishes of a tropical stream: 2. Relationships to diet-the long and short of a convoluted issue. Environ Biol Fish 42:129–141

    Article  Google Scholar 

  • Krogdahl Å, Nordrum S, Sorensen M, Brudeseth L, Rosjo C (1999) Effects of diet composition on apparent nutrient absorption along the intestinal tract and of subsequent fasting on mucosal disaccharidase activities and plasma nutrient concentration in Atlantic salmon Salmo salar L. Aquac Nutr 5(2):121–133

  • Krogdahl Å, Penn M, Thorsen J, Refstie S, Bakke AM (2010) Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquac Res 41:333–344

    Article  CAS  Google Scholar 

  • Liu Z, Zhou Y, Feng J, Lu S, Zhao Q, Zhang J (2013) Characterization of oligopeptide transporter (PepT1) in grass carp (Ctenopharyngodon idella). Comp Biochem Physiol B 164:194–200

    Article  CAS  PubMed  Google Scholar 

  • Maffia M, Rizzello A, Acierno R, Verri T, Rollo M, Danieli A, Döring F, Daniel H, Storelli C (2003) Characterisation of intestinal peptide transporter of the Antarctic haemoglobinless teleost Chionodraco hamatus. J Exp Biol 206:705–714

    Article  CAS  PubMed  Google Scholar 

  • Maffia M, Verri T, Danieli A, Thamotharan M, Pastore M, Ahearn GA, Storelli C (1997) H (+)-glycyl-L-proline cotransport in brush-border membrane vesicles of eel (Anguilla anguilla) intestine. Am J Phys Regul Integr Comp Phys 272:R217–R225

    CAS  Google Scholar 

  • Matthews JC (2000) Amino acid and peptide transport system. In: D’Mello JPE (ed) Farm Animal Metabolism and Nutrition. CABI Publishing, Wallingford, pp 3–23

  • McLean E, Donaldson EM (1990) Absorption of bioactive proteins by the gastrointestinal tract of fish: a review. J Aquat Anim Health 2:1–11

    Article  Google Scholar 

  • Micale V, Garaffo M, Genovese L, Spedicato MT, Muglia U (2006) The ontogeny of the alimentary tract during larval development in common pandora Pagellus erythrinus L. Aquaculture 251:354–365

    Article  Google Scholar 

  • Mohanta KN, Subramanian S, Korikanthimath VS (2016) Potential of earthworm (Eisenia foetida) as dietary protein source for rohu (Labeo rohita) advanced fry. Cogent Food Agric 2:1138594

    Google Scholar 

  • Mondal S, Roy T, Ray AK (2010) Characterization and identification of enzyme-producing bacteria isolated from the digestive tract of bata, Labeo bata. J World Aquacult Soc 41(3):369–377

    Article  Google Scholar 

  • Morales GA, Denstadli V, Collins SA, Mydland LT, Moyano FJ, Øverland M (2016) Phytase and sodium diformate supplementation in a plant-based diet improves protein and mineral utilization in rainbow trout (Oncorhynchus mykiss). Aquac Nutr 22:1301–1311

    Article  CAS  Google Scholar 

  • Navarro-Guillén C, Rønnestad I, Jordal AEO, Moyano FJ, Yúfera M (2017) Involvement of cholecystokinin (CCK) in the daily pattern of gastrointestinal regulation of Senegalese sole (Solea senegalensis) larvae reared under different feeding regimes. Comp Biochem Physiol A 203:126–132

    Article  Google Scholar 

  • Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci 106:15103–15110

    Article  CAS  PubMed  Google Scholar 

  • Newsome SD, Fogel ML, Kelly L, del Rio CM (2011) Contributions of direct incorporation from diet and microbial amino acids to protein synthesis in Nile tilapia. Funct Ecol 25:1051–1062

    Article  Google Scholar 

  • Nitzan T, Rozenberg P, Cnaani A (2017) Differential expression of amino-acid transporters along the intestine of Mozambique tilapia (Oreochromis mossambicus) and the effect of water salinity and time after feeding. Aquaculture 472:71–75

    Article  CAS  Google Scholar 

  • Nordrum S, Bakke-McKellep AM, Krogdahl Å, Buddington RK (2000) Effects of soybean meal and salinity on intestinal transport of nutrients in Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B 125:317–335

    Article  CAS  PubMed  Google Scholar 

  • Nyadjeu P, Djopnang JD, Mbatchou PN, Tabi-Tomedi ME, Tchoumbougnang F (2018) Effect of fish meal substitution with lima bean meal on growth and feed utilization in common carp fry, Cyprinus carpio. Int J Biol Chem Sci 12:812–821

    Article  CAS  Google Scholar 

  • Ogunji J, Schulz C, Kloas W (2008) Growth performance, nutrient utilization of Nile tilapia Oreochromis niloticus fed housefly maggot meal (magmeal) diets. Turk J Fish Aquat Sci 8:141–147

    Google Scholar 

  • Olvera-Novoa MA, Olivera-Castillo L, Martínez-Palacios CA (2002) Sunflower seed meal as a protein source in diets for Tilapia rendalli (Boulanger, 1896) fingerlings. Aquac Res 33:223–229

    Article  Google Scholar 

  • Orozco ZGA, Soma S, Kaneko T, Watanabe S (2018) Spatial mRNA expression and response to fasting and refeeding of neutral amino acid transporters slc6a18 and slc6a19a in the intestinal epithelium of Mozambique tilapia. Front Physiol 9:212

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostaszewska T, Dabrowski K, Kamaszewski M, Grochowski P, Verri T, Rzepkowska M, Wolnicki J (2010) The effect of plant protein-based diet supplemented with dipeptide or free amino acids on digestive tract morphology and PepT1 and PepT2 expressions in common carp (Cyprinus carpio L.). Comp Biochem Physiol A 157:158–169

    Article  Google Scholar 

  • Otubusin SO, Ogunleye FO, Agbebi OT (2009) Feeding trials using local protein sources to replace fishmeal in pelleted feeds in catfish (Clarias gariepinus Burchell 1822) culture. Eur J Sci Res 31:142–147

    Google Scholar 

  • Oxley A, Jutfelt F, Sundell K, Olsen RE (2007) Sn-2-monoacylglycerol not glycerol is preferentially utilised for triacylglycerol and phosphatidylcholine biosynthesis in Atlantic salmon (Salmo salar L.) intestine. Comp Biochem Physiol B Biochem Mol Biol 146:115–123

    Article  PubMed  Google Scholar 

  • Park J, Levic DS, Sumigray KD, Bagwell J, Eroglu O, Block CL, Eroglu C, Barry R, Lickwar CR, Rawls JF, Watts SA, Lechler T, Bagnat M (2019) Lysosome-rich enterocytes mediate protein absorption in the vertebrate gut. Dev Cell 51:7–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raji AA, Jimoh WA, Bakar NA, Taufek NM, Muin H, Alias Z, Milow P, Razak SA (2020) Dietary use of Spirulina (Arthrospira) and Chlorella instead of fish meal on growth and digestibility of nutrients, amino acids and fatty acids by African catfish. J Appl Phycol 32:1763–1770

  • Ray AK, Roy T, Mondal S, Ringø E (2010) Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquac Res 41:1462–1469

    CAS  Google Scholar 

  • Richard N, Engrola S, Palma PS, Simes DC, Conceição LEC (2015) Assessment of protein digestive capacity and metabolic utilisation during ontogeny of Senegalese sole larvae: a tracer study using in vivo produced radiolabelled polypeptide fractions. Aquaculture 441:35–44

    Article  CAS  Google Scholar 

  • Rimoldi S, Bossi E, Harpaz S, Cattaneo AG, Bernardini G, Saroglia M, Terova G (2015) Intestinal B(0)AT1 (SLC6A19) and PEPT1 (SLC15A1) mRNA levels in European sea bass (Dicentrarchus labrax) reared in fresh water and fed fish and plant protein sources. J Nutr Sci 4:e21. https://doi.org/10.1017/jns.2015.9

  • Rimoldi S, Terova G, Ascione C, Giannico R, Brambilla F (2018) Next generation sequencing for gut microbiome characterization in rainbow trout (Oncorhynchus mykiss) fed animal by-product meals as an alternative to fishmeal protein sources. PLoS One 13:e0193652

    Article  PubMed  PubMed Central  Google Scholar 

  • Romano A, Kottra G, Barca A, Tiso N, Maffia M, Argenton F, Daniel H, Storelli C, Verri T (2006) High-affinity peptide transporter PEPT2 (SLC15A2) of the zebrafish Danio rerio: functional properties, genomic organization, and expression analysis. Physiol Genomics 24(3):207–217

  • Rønnestad I, Conceicao LE (2005) Aspects of protein and amino acids digestion and utilization by marine fish larvae. In: Starck JM & Wang T (eds) Physiological and ecological adaptations to feeding in vertebrates. Science Publishers, Enfield, New Hampshire,  pp 389–416

  • Rønnestad I, Fyhn HJ (1993) Metabolic aspects of free amino acids in developing marine fish eggs and larvae. Rev Fish Sci 1:239–259

    Article  Google Scholar 

  • Rønnestad I, Gavaia PJ, Viegas CS, Verri T, Romano A, Nilsen TO, Jordal AO, Kamisaka Y, Cancela ML (2007a) Oligopeptide transporter PepT1 in Atlantic cod (Gadus morhua L.): cloning, tissue expression and comparative aspects. J Exp Biol 210:3883–3896

    Article  PubMed  Google Scholar 

  • Rønnestad I, Kamisaka Y, Conceição LEC, Morais S, Tonheim SK (2007b) Digestive physiology of marine fish larvae: hormonal control and processing capacity for proteins, peptides and amino acids. Aquaculture 268:82–97

    Article  Google Scholar 

  • Rønnestad I, Morais S (2008) Digestion. In: Finn RN & Kapoor BG (eds) Fish Larval Physiology. Science Publishers, Enfield, New Hamphire, pp. 201–262

  • Rønnestad I, Murashita K, Kottra G, Jordal AE, Narawane S, Jolly C, Daniel H, Verri T (2010) Molecular cloning and functional expression of Atlantic salmon peptide transporter 1 in Xenopus oocytes reveals efficient intestinal uptake of lysine-containing and other bioactive di- and tripeptides in teleost fish. J Nutr 140:893–900

    Article  PubMed  Google Scholar 

  • Rønnestad I, Rojas-Garcı́a CR, Tonheim SK, Conceicao LE (2001) In vivo studies of digestion and nutrient assimilation in marine fish larvae. Aquaculture 201:161–175

    Article  Google Scholar 

  • Rønnestad I, Thorsen A, Finn RN (1999) Fish larval nutrition: a review of recent advances in the roles of amino acids. Aquaculture 177:201–216

    Article  Google Scholar 

  • Rønnestad I, Tonheim SK, Fyhn HJ, Rojas-Garcıa CR, Kamisaka Y, Koven W, Finn RN, Terjesen BF, Barr Y, Conceição LEC (2003) The supply of amino acids during early feeding stages of marine fish larvae: a review of recent findings. Aquaculture 227:147–164

    Article  Google Scholar 

  • Rønnestad I, Yúfera M, Ueberschär B, Ribeiro L, Sæle Ø, Boglione C (2013) Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Rev Aquac 5:S59–S98

    Article  Google Scholar 

  • Roohani AM, Abedian Kenari A, Fallahi Kapoorchali M, Borani MS, Zoriezahra SJ, Smiley AH, Esmaeili M, Rombenso AN (2019) Effect of spirulina Spirulina platensis as a complementary ingredient to reduce dietary fish meal on the growth performance, whole-body composition, fatty acid and amino acid profiles, and pigmentation of Caspian brown trout (Salmo trutta caspius) juveniles. Aquac Nutr 25:633–645

    Article  CAS  Google Scholar 

  • Rust MB (1996) Quantitative aspects of nutrient assimilation in six species of fish larvae. Doctorate thesis. University of Washington, School of Fisheries. Seattle, USA

  • Rust MB, Hardy RW, Stickney RR (1993) A new method for force-feeding larval fish. Aquaculture 116:341–352

    Article  Google Scholar 

  • Samerotte AL, Drazen JC, Brand GL, Seibel BA, Yancey PH (2007) Correlation of trimethylamine oxide and habitat depth within and among species of teleost fish: an analysis of causation. Physiol Biochem Zool 80:197–208

    Article  CAS  PubMed  Google Scholar 

  • Sangaletti R, Terova G, Peres A, Bossi E, Corà S, Saroglia M (2009) Functional expression of the oligopeptide transporter PepT1 from the sea bass (Dicentrarchus labrax). Pflugers Arch - Eur J Physiol 459:47–54

    Article  CAS  Google Scholar 

  • Santigosa E, García-Meilán I, Valentin JM, Pérez-Sánchez J, Médale F, Kaushik S, Gallardo MA (2011) Modifications of intestinal nutrient absorption in response to dietary fish meal replacement by plant protein sources in sea bream (Sparus aurata) and rainbow trout (Oncorhynchus mykiss). Aquaculture 317:146–154

    Article  CAS  Google Scholar 

  • Sire MF, Vernier JM (1992) Intestinal absorption of protein in teleost fish. Comp Biochem Physiol A Physiol 103:771–781

    Article  Google Scholar 

  • Sogbesan AO, Ugwumba AAA (2008) Nutritional evaluation of termite (Macrotermes subhyalinus) meal as animal protein supplements in the diets of Heterobranchus longifilis (Valenciennes, 1840) fingerlings. Turk J Fish Aquat Sci 8:149–158

    Google Scholar 

  • Storelli S, Vilella S, Romano MP, Maffia M, Cassano G (1989) Brush-border amino acid transport mechanisms in carnivorous eel intestine. Am J Phys Regul Integr Comp Phys 257:R506–R510

    CAS  Google Scholar 

  • Tan B, Mai K, Zheng S, Zhou Q, Liu L, Yu Y (2005) Replacement of fish meal by meat and bone meal in practical diets for the white shrimp Litopenaeus vannamei (Boone). Aquac Res 36:439–444

    Article  Google Scholar 

  • Terova G, Corà S, Verri T, Rimoldi S, Bernardini G, Saroglia M (2009) Impact of feed availability on PepT1 mRNA expression levels in sea bass (Dicentrarchus labrax). Aquaculture 294:288–299

    Article  CAS  Google Scholar 

  • Terova G, Rimoldi S, Ascione C, Gini E, Ceccotti C, Gasco L (2019) Rainbow trout (Oncorhynchus mykiss) gut microbiota is modulated by insect meal from Hermetia illucens prepupae in the diet. Rev Fish Biol Fish 29:465–486

    Article  Google Scholar 

  • Terova G, Robaina L, Izquierdo M, Cattaneo A, Molinari S, Bernardini G, Saroglia M (2013) PepT1 mRNA expression levels in sea bream (Sparus aurata) fed different plant protein sources. Springerplus 2:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Thamotharan M, Gomme J, Zonno V, Maffia M, Storelli C, Ahearn GA (1996b) Electrogenic proton-coupled intestinal dipeptide transport in herbivorous and carnivorous teleosts. Am J Phys Regul Integr Comp Phys 270:R939–R947

    CAS  Google Scholar 

  • Thamotharan M, Zonno V, Storelli C, Ahearn GA (1996a) Basolateral dipeptide transport by the intestine of the teleost Oreochromis mossambicus. Am J Phys Regul Integr Comp Phys 270:R948–R954

    CAS  Google Scholar 

  • Tonheim SK, Espe M, Hamre K, Rønnestad I (2005) Pre-hydrolysis improves utilisation of dietary protein in the larval teleost Atlantic halibut (Hippoglossus hippoglossus L.). J Exp Mar Biol Ecol 321:19–34

    Article  CAS  Google Scholar 

  • Verri T, Kottra G, Romano A, Tiso N, Peric M, Maffia M, Boll M, Argenton F, Daniel H, Storelli C (2003) Molecular and functional characterisation of the zebrafish (Danio rerio) PEPT1-type peptide transporter. FEBS Lett 549:115–122

    Article  CAS  PubMed  Google Scholar 

  • Verri T, Maffia M, Danieli A, Herget M, Wenzel U, Daniel H, Storelli C (2000) Characterisation of the H (+)/peptide cotransporter of eel intestinal brush-border membranes. J Exp Biol 203:2991–3001

    Article  CAS  PubMed  Google Scholar 

  • Verri T, Terova G, Romano A, Barca A, Pisani P, Storelli C, Saroglia M (2012) The SoLute Carrier (SLC) family series in teleost fish. In: Saroglia M & Liu Z (eds) Functional Genomics in Aquaculture. John Wiley & Sons, Oxford, pp. 219–320

  • Wang J, Yan X, Lu R, Meng X, Nie G (2017) Peptide transporter 1 (PepT1) in fish: a review. Aquacult fish 2:193–206

    Google Scholar 

  • Wang Z, Du J, Lam SH, Mathavan S, Matsudaira P, Gong Z (2010) Morphological and molecular evidence for functional organization along the rostrocaudal axis of the adult zebrafish intestine. BMC Genomics 11:1–13

    Article  Google Scholar 

  • Watanabe Y (1984) Morphological and functional changes in rectal epithelium cells of pond smelt during post embryonic development. Bull Jpn Soc Sci Fish 50:805–814

    Article  Google Scholar 

  • Wei Y, Liang M, Xu H (2020) Fish protein hydrolysate affected amino acid absorption and related gene expressions of IGF-1/AKT pathways in turbot (Scophthalmus maximus). Aquac Nutr 26:145–155

    Article  CAS  Google Scholar 

  • Wijkström UN (2009) The use of wild fish as aquaculture feed and its effects on income and food for the poor and the undernourished. In: Fish as feed inputs for aquaculture: practices, sustainability and implications, vol 518. FAO, Rome, pp 371–407

    Google Scholar 

  • Wu N, Wang B, Cui ZW, Zhang XY, Cheng YY, Xu X, Li XM, Wong ZX, Chen DD, Zhang YA (2018) Integrative transcriptomic and microRNAomic profiling reveals immune mechanism for the resilience to soybean meal stress in fish gut and liver. Front Physiol 9:1154

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu P, Li Y, Cheng J, Chen L, Zeng M, Wu Y, Wang J, Zhang J, Chu W (2016) Transcriptome analysis and postprandial expression of amino acid transporter genes in the fast muscles and gut of Chinese perch (Siniperca chuatsi). PLoS One 11(7):e0159533. https://doi.org/10.1371/journal.pone.0159533

  • Xu D, He G, Mai K, Zhou H, Xu W, Song F (2016) Expression pattern of peptide and amino acid genes in digestive tract of transporter juvenile turbot (Scophthalmus maximus L.). J Ocean U China 15:334–340

    Article  CAS  Google Scholar 

  • Xu QY, Wang CA, Zhao ZG, Luo L (2012) Effects of replacement of fish meal by soy protein isolate on the growth, digestive enzyme activity and serum biochemical parameters for juvenile Amur sturgeon (Acipenser schrenckii). Asian Austral J Anim 25:1588–1594

    Article  CAS  Google Scholar 

  • Yancey PH, Gerringer ME, Drazen JC, Rowden AA, Jamieson A (2014) Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proc Natl Acad Sci 111:4461–4465

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH, Rhea MD, Kemp K, Bailey DM (2004) Trimethylamine oxide, betaine and other osmolytes in deep-sea animals: depth trends and effects on enzymes under hydrostatic pressure. Cell Mol Biol 50:371–376

    CAS  PubMed  Google Scholar 

  • Yones AMM, Metwalli AA (2015) Effects of fish meal substitution with poultry by-product meal on growth performance, nutrients utilization and blood contents of juvenile Nile Tilapia (Oreochromis niloticus). J Aquacult Res Dev 7(1):1–6. https://doi.org/10.4172/2155-9546.1000389

  • Younis ESM, Al-Quffail AS, Al-Asgah NA, Abdel-Warith AWA, Al-Hafedh YS (2018) Effect of dietary fish meal replacement by red algae, Gracilaria arcuata, on growth performance and body composition of Nile tilapia Oreochromis niloticus. Saudi J Biol Sci 25:198–203

    Article  CAS  PubMed  Google Scholar 

  • Zaiss MM, Papadakis IE, Maingot E, Divanach P, Mylonas CC (2006) Ontogeny of the digestive tract in shi drum (Umbrina cirrosa L.) reared using the mesocosm larval rearing system. Aquaculture 260:357–368

    Article  Google Scholar 

  • Zhang YL, Duan XD, Feng L, Jiang WD, Wu P, Liu Y, Kuang SY, Tang T, Zhou XQ (2020) Soybean glycinin disrupted intestinal structural integrity related to aggravation of apoptosis and downregulated transcription of tight junction proteins in the intestine of juvenile grass carp (Ctenopharyngodon idella). Aquaculture 531:735909

    Article  Google Scholar 

  • Zhang YL, Duan XD, Jiang WD, Feng L, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhou XQ (2019) Soybean glycinin decreased growth performance, impaired intestinal health, and amino acid absorption capacity of juvenile grass carp (Ctenopharyngodon idella). Fish Physiol Biochem 45:1589–1516

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Council of Science and Industrial Research (CSIR), India, through JRF-NET fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors contributed equally.

Corresponding author

Correspondence to Surjya Kumar Saikia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Being a review work, there is no experimental part and no animals used in this article.

Consent to participate

Being a review work, there is no participation.

Consent for publication

There is no copyright material used in the current article.

Code availability

No code is available.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, S., Saikia, S.K. Absorption of protein in teleosts: a review. Fish Physiol Biochem 47, 313–326 (2021). https://doi.org/10.1007/s10695-020-00913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-020-00913-6

Keywords

Navigation