Skip to main content

Advertisement

Log in

Weathering and paleoprecipitation indices in a Late Pleistocene–Holocene loess–paleosol sequence in central Argentina

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A Late Pleistocene–Holocene loess–paleosol sequence in central Argentina was studied to obtain a weathering insight and to probe geochemical tools as paleoclimatic proxies. Three paleosols and a buried soil interlayered with loess mantles compose Corralito I sequence (32°00′7″ S, 64°11′08″ W, 469 m a.s.l). Several weathering indices (CIA, CIA-K, and LWI) and elemental ratios (∑Bases/Al2O3, Rb/Sr, CaO/TiO2, Na2O/TiO2) were calculated. An incipient weathering degree throughout the sequence was detected, denoting that the parent material (i.e., loess mantles) has not been substantially modified by pedogenesis. Although a statistically significant correlation between magnetic susceptibility and several weathering indices was identified, the weathering intensity was not strong enough to produce a decrease in the magnetic signal of the paleosols, which is, in part, inherited from the detrital fraction. Paleoprecipitation indices, calculated using geochemical data, suggest slightly wetter conditions during paleosol formation when compared to loess. Paleosols were formed during humid conditions (paleosols II and II during MIS 5e, and paleosol I during MIS 3) with sedimentation pause and soil development, whereas loess layers were deposited during more arid conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Zárate 2003) and location of Corralito I loess–paleosol sequence. b Field photograph of the sequence. c Stratigraphic column of the sequence (modified from Rouzaut and Orgeira 2017)

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali A, Achyuthan H, Azhardin M (2019) Clay minerals and micromorphology of the Loess Paleosols, Kashmir Valley, India. J Geol Soc India 94(3):275–280

    Article  Google Scholar 

  • Argüello GL, Dohrmann R, Mansilla L (2012) Loess of Córdoba (Argentine) Central Plain, present state of knowledge and new results of research. In: Rossi A, Miranda L (eds) Argentina: environmental, geographical and cultural issues. Nova Science Pub Incorporated, New York, pp 1–49

    Google Scholar 

  • Babeesh C, Achyuthan H, Jaiswal M, Lone A (2017) Late quaternary loess-like paleosols and pedocomplexes, geochemistry, provenance and source area weathering, Manasbal, Kashmir Valley, India. Geomorphology 284:191–205

    Article  Google Scholar 

  • Banerjee SK, Hunt CP, Liu XM (1993) Separation of local signals from the regional paleomonsoon record of the Chinese loess plateau: a rock-magnetic approach. Geophys Res Lett 20:843–846

    Article  Google Scholar 

  • Bland W, Rolls D (1998) Weathering: an introduction to the scientific principles. Arnold, London

    Google Scholar 

  • Buggle B, Hambach U, Glaser B, Gerasimenko N, Marković S, Glaser I, Zöller L (2009) Stratigraphy, and spatial and temporal paleoclimatic trends in Southeastern/Eastern European loess-paleosol sequences. Quatern Int 196:86–106

    Article  Google Scholar 

  • Buggle B, Glaser B, Hambach U, Gerasimenko N, Marković S (2011) An evaluation of geochemical weathering indices in loess-paleosol studies. Quatern Int 240:12–21

    Article  Google Scholar 

  • Campodonico V, Rouzaut S, Pasquini A (2019) Geochemistry of a Late Quaternary loess-paleosol sequence in central Argentina: implications for weathering, sedimentary recycling and provenance. Geoderma 351:235–249

    Article  Google Scholar 

  • Carignano C, Kröhling D, Degiovanni S, Cioccale M (2014) Geomorfología. In: Martino and Guereschi (Eds.), Relatorio XIX Congreso Geológico Argentino, Córdoba, pp 747-843

  • Chen J, Yang T, Matishov GG, Velichko AA, Zeng B, He Y, Shi P, Fan Z, Titov VV, Borisova OK, Timireva SN, Konstantinov EA, Kononov YM, Kurbanov RN, Panin PG, Chubarov IG (2018) A luminescence dating study of loess deposits from the Beglitsa section in the Sea of Azov, Russia. Quatern Int 478:27–37

    Article  Google Scholar 

  • Depetris PJ, Pasquini AI, Lecomte KL (2014) Weathering and the riverine denudation of continents. Springer, Berlin, p 95

    Book  Google Scholar 

  • Döering A (1907) La formation Pampéenne de Córdoba. Rev Museo Plata 14:461–465

    Google Scholar 

  • Evans ME, Heller F (1994) Magnetic enhancement and paleoclimate: study of a loess/paleosol couplet across the Loess Plateau of China. Geophys J Int 117:257–264

    Article  Google Scholar 

  • Evans ME, Heller F (2001) Magnetism of loess/palaeosol sequences: recent developments. Earth Sci Rev 54(1):129–144

    Article  Google Scholar 

  • Flasarová K, Strouhalová B, Sefrna L, Verrecchia E, Lauer T, Juricková L, Kolarik P, Lozek V (2020) Multiproxy evidence of Middle and Late Pleistocene environmental changes in the loess-paleosol sequence of Bůhzdař (Czech Republic). Quatern Int 552:4–14

    Article  Google Scholar 

  • Florindo F, Roberts AP, Palmer MR (2003) Magnetite dissolution in siliceous sediments. Geochem, Geophys Geosyst 4(7):1053

    Article  Google Scholar 

  • Frechen M, Oches E, Kohfeld K (2003) Loess in Europe—mass accumulation rates during the Last Glacial Period. Quatern Sci Rev 22:1835–1857

    Article  Google Scholar 

  • Frechen M, Seifert B, Sanabria JA et al (2009) Chronology of Late Pleistocene Pampa loess from the Córdoba area in Argentina. J Quat Sci 24(7):761–772

    Article  Google Scholar 

  • Frenguelli J (1918) Notas preliminares sobre la constitución geológica del subsuelo en la ciudad de Córdoba. Boletín de la Academia Nacional de Ciencias de Córdoba XXIII: 203–220

  • Gallagher TM, Sheldon ND (2013) A new paleothermometer for forest paleosols and its implications for Cenozoic climate. Geology 41(6):647–650

    Article  Google Scholar 

  • Gallet S, Jahn B, Lanoë B, Dia A, Rossello E (1998) Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth Planetary Sci Letters 156:157–172

    Article  Google Scholar 

  • Ghafarpour A, Khormali F, Balsam W, Karimi A, Ayoubi S (2016) Climatic interpretation of loess-paleosol sequences at Mobarakabad and Aghband, Northern Iran. Quatern Res 86:95–109

    Article  Google Scholar 

  • Gili S, Gaiero DM, Goldstein SL, Chemale F Jr, Jweda J, Kaplan MR, Koester E (2017) Glacial/interglacial changes of Southern Hemisphere wind circulation from the geochemistry of South American dust. Earth Planet Sci Lett 469:98–109

    Article  Google Scholar 

  • Gorgas J, Tassile J, Jarsún B, Zamora E, Bosnero H, Lovera E, Rovelo A (2006) LOS SUELOS. Nivel de reconocimiento 1:500.000. Recursos Naturales de la Provincia de Córdoba. INTA (Instituto Nacional de Tecnología Agropecuaria). 612 pp

  • Han J, Lu H, Wu N (1996) Magnetic susceptibility of modern soils in China and its use for paleoclimate reconstruction. Studia Geophys Geodaetica 40:262–275

    Article  Google Scholar 

  • Hannigan R, Sholkovitz E (2001) The development of middle rare earth element enrichments in freshwaters: weathering of phosphate minerals. Chem Geol 175(3–4):495–508

    Article  Google Scholar 

  • Hao Q, Guo Z, Qiao Y, Xu B, Oldfield F (2010) Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China. Quatern Sci Rev 29(23):3317–3326

    Article  Google Scholar 

  • Heller F, Shen CD, Beer J, Liu XM, Liu TS, Bronger A, Suter M, Bonanig G (1993) Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and paleoclimatic implications. Earth Planetary Sci Letters 114:385–390

    Article  Google Scholar 

  • Heusser JC, Claraz G (1866) Essai pour servir a une description physiqye et geognostique de la province argentine de Buenos Ayres. Memoire Societé Helvetique Sci Naturelles 21:139

    Google Scholar 

  • Hofmann A (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90(3):297–314

    Article  Google Scholar 

  • Hošek J, Hambach U, Lisá L, Grygar TM, Horáček I, Meszner S, Knésl I (2015) An integrated rock-magnetic and geochemical approach to loess/paleosol sequences from Bohemia and Moravia (Czech Republic): implications for the Upper Pleistocene paleoenvironment in central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 418:344–358

    Article  Google Scholar 

  • Imbellone PA, Giménez JE, Panigatti JL (2010) Suelos de la región pampeana. procesos de formación (No. P33 INTA 18288). INTA

  • Iriondo M (1990) The upper Holocene dry period in the Argentine plains. In: Rabassa J (ed) Quaternary of South America and Antartic Peninsula, vol 7. AA Balkema Publ., Rotterdam, pp 197–217

    Google Scholar 

  • Iriondo M (1997) Models of deposition of loess and loessoids in the upper Quaternary of South America. J S Am Earth Sci 10(1):71–79

    Article  Google Scholar 

  • Iriondo M, Kröhling D (1997) El Sistema Eólico Pampeano. Comunicación Museo Provincial Ciencias Naturales Florentino Ameghino, Santa 5(1):1–68

    Google Scholar 

  • Johanesson K, Zhou X (1999) Origin of middle rare earth element enrichments in acid waters of a Canadian High Arctic lake. Geochim Cosmochim Acta 63(1):153–165

    Article  Google Scholar 

  • Kemp RA (2001) Pedogenic modification of loess: significance for palaeoclimatic reconstruction. Earth Sci Rev 54:145–156

    Article  Google Scholar 

  • Kühn P, Techmer A, Weidenfeller M (2013) Lower to middle Weichselian pedogenesis and palaeoclimate in Central Europe using combined micromorphology and geochemistry: the loess-paleosol sequence of Alsheim (Mainz Basin, Germany). Quatern Sci Rev 75:43–58

    Article  Google Scholar 

  • Laveuf C, Cornu S (2009) A review on the potentiality of Rare Earth Elements to trace pedogenetic processes. Geoderma 154:1–12

    Article  Google Scholar 

  • Li F, Jin Z, Xie C et al (2007) Roles of sorting and chemical weathering in the geochemistry and magnetic susceptibility of Xiashu loess, East China. J Asian Earth Sci 29(5):813–822

    Article  Google Scholar 

  • Liang L, Sun Y, Beets CJ, Prins MA, Wua F, Vandenberghe J (2013) Impacts of grain size sorting and chemical weathering on the geochemistry of Jingyuan loess in the northwestern Chinese Loess Plateau. J Asian Earth Sci 69:177–184

    Article  Google Scholar 

  • Liu X, Rolph T, Bloemendal J (1995) Quantitative estimates of paleo-precipitation at Xinfeng, in the Loess Plateau of China. Paleogeogr, Paleoclimatol Paleoecol 113:243–248

    Article  Google Scholar 

  • Mack GH, James WC, Monger HC (1993) Classification of paleosols. Geol Soc Am Bull 105(2):129–136

    Article  Google Scholar 

  • Maher BA, Thompson R (1995) Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols. Quatern Res 44(3):383–391

    Article  Google Scholar 

  • Maher BA, Thompson R (1999) Quaternary climates, environments and magnetism. Cambridge University Press, London

    Book  Google Scholar 

  • Maynard JB (1992) Chemistry of modern soils as a guide to interpreting Precambrian paleosols. J Geol 100:279–289

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst. https://doi.org/10.1029/2000GC000109

    Article  Google Scholar 

  • Morrás H (1999) Geochemical differentiation of Quaternary sediments from the Pampean region based on soil phosphorus contents as detected in the early 20th century. Quat Int 62:57–67

    Article  Google Scholar 

  • Muhs D, Bettis EA III (2000) Geochemical variations in Peoria loess of western Iowa indicate paleowinds of midcontinental North America during last glaciation. Quatern Res 53:49–61

    Article  Google Scholar 

  • Muhs D, Ager T, Bettis E III et al (2003) Stratigraphy and palaeoclimatic significance of Late Quaternary loess–palaeosol sequences of the Last Interglacial-Glacial cycle in central Alaska. Quatern Sci Rev 22:1947–1986

    Article  Google Scholar 

  • Nesbitt H (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279:206–210. https://doi.org/10.1038/279206a0

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299(5885):715–717

    Article  Google Scholar 

  • Nicolli H, Bundschuh J, Garcia J, Falcón C, Jean J (2010) Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates—evidence from the Chaco-Pampean plain (Argentina). Water Res 44:5589–5604

    Article  Google Scholar 

  • Orgeira MJ, Egli R, Compagnucci R (2011) A quantitative model of magnetic enhancement in loessic soils. Chapter in Earth Magnetic Interior (IAGA special Sopron book series) Springer 25, 361–368

  • Pasquini AI, Campodonico VA, Rouzaut S (2017) Geochemistry of a soil catena developed from loess deposits in a semiarid environment, Sierra Chica de Córdoba, central Argentina. Geoderma 295:53–68

    Article  Google Scholar 

  • Porter SC (2007) Loess Record—China In: Encyclopedia of Quaternary Science, Scott (ed.). Elsevier, Amsterdam, 1429–1440

  • Price J, Velbel M (2003) Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chem Geol 202:397–416

    Article  Google Scholar 

  • Pye K, Sherwin W (1999) Loess. In: Goudie A, Livingstone I, Stokes S (eds) Aeolian environments sediments and landforms. Wiley, Chichester, pp 213–240

    Google Scholar 

  • Qiao Y, Hao Q, Peng S, Wang Y, Li J, Liu Z (2011) Geochemical characteristics of the eolian deposits in southern China, and their implications for provenance and weathering intensity. Palaeogeogr Palaeoclimatol Palaeoecol 308:513–523

    Article  Google Scholar 

  • Rao Z, Guo W, Xie L, Huang C, Liu X, Hua H, Chen F (2015) High resolution δ13CTOC and magnetic susceptibility data from the late Early Pleistocene southern margins of the Chinese Loess Plateau. Org Geochem 87:78–85

    Article  Google Scholar 

  • Retallack GJ (1991) Untangling the effects of burial alteration and ancient soil formation. Ann Rev Earth Planetary Sci 19:183–206

    Article  Google Scholar 

  • Retallack GJ (2001) Soils of the past: an introduction to paleopedology. John Wiley & Sons USA, 416 pp

  • Rouzaut S, Orgeira MJ (2017) Influence of volcanic glass on the magnetic signal of different paleosols in Córdoba, Argentina. Stud Geophys Geod 61:361–384

    Article  Google Scholar 

  • Rouzaut S, Orgeira MJ, Vásquez C, Argüello G, Sanabria J (2012a) Magnetic properties in a loess-paleosol sequence of Córdoba, Argentina. Rev Sociedad Geol España 25(1–2):55–63

    Google Scholar 

  • Rouzaut S, Orgeira MJ, Vásquez C, Sanabria J, Argüello G, Bachmeie O (2012b) Estudio de magnetismo de rocas en una serie de suelo con vegetación autóctona y cultivados en el centro de la provincia de Córdoba. Argentina Geoacta 37(2):67–72

    Google Scholar 

  • Rouzaut S, Orgeira MJ, Tófalo O, Vásquez C, Argüello G, Sanabria J, Mansilla L (2013) Estudio comparativo de propiedades magnéticas en la región central de la provincia de Córdoba. Argentina Geoacta 38(2):128–139

    Google Scholar 

  • Rouzaut S, Orgeira MJ, Vásquez C, Ayala R, Argüello G, Tauber A, Tófalo R, Mansilla L, Sanabria J (2015) Rock magnetism in two loess–paleosol sequences in Córdoba. Argentina Environ Earth Sci 73(10):6323–6339

    Article  Google Scholar 

  • Schatz AK, Scholten T, Kühn P (2014) Paleoclimate and weathering of the Tokaj (NE Hungary) loess-paleosol sequence: a comparison of geochemical weathering indices and paleoclimate parameters. Clim Past Discussions 10(1):469–507

    Google Scholar 

  • Scott KM, Pain CF (2009) Regolith Science. Springer-CSIRO Publishing, Dordrecht-Melbourne

    Book  Google Scholar 

  • Sheldon ND, Tabor NJ (2009) Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sci Rev 95(1):1–52

    Article  Google Scholar 

  • Sheldon ND, Retallack GJ, Tanaka S (2002) Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. J Geol 110:687–696

    Article  Google Scholar 

  • Smedley PL, Nicolli HB, Macdonald DM, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa. Argentina Appl Geochem 17(3):259–284

    Article  Google Scholar 

  • Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington

    Google Scholar 

  • Su N, Yang SY et al (2015) Magnetic parameters indicate the intensity of chemical weathering developed on igneous rocks in China. CATENA 133:328–341

    Article  Google Scholar 

  • Teruggi ME (1957) The nature and origin of the Argentine loess. J Sediment Petrol 27:322–332

    Google Scholar 

  • Tugulan LC, Duliu OG, Boja A, Dumitras D, Zimicovskaia I, Culicov O, Frontasyeva M (2016) On the geochemistry of the Late Quaternary loess deposits of Dobrogea (Romania). Quatern Int 399:100–110

    Article  Google Scholar 

  • Újvári G, Varga A, Balogh-Brunstad Z (2008) Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quatern Res 69:421–437

    Article  Google Scholar 

  • Yang S, Ding F, Ding Z (2006) Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan. Geochim Cosmochim Acta 70(7):1695–1709

    Article  Google Scholar 

  • Zárate M (2003) Loess of southern South America. Quatern Sci Rev 22:1987–2006

    Article  Google Scholar 

  • Zhang W, Yu L, Lu M, Zheng X, Shi Y (2007) Magnetic properties and geochemistry of the Xiashu Loess in the present subtropical area of China, and their implications for pedogenic intensity. Earth Planet Sci Lett 260(1):86–97

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT-2017-2026), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina, PIP 112-201701-00088), and the Universidad Nacional de Córdoba (SECyT- UNC 33620180100385CB). V.A. Campodonico and A.I. Pasquini are members of CICyT, CONICET. We are grateful to two anonymous reviewers who helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Rouzaut.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a part of the Topical Collection in Environmental Earth Sciences on “Advances in Environmental Geochemistry” guest edited by Dr. Eleanor Carol, Dr. Lucia Santucci and Dr. Lia Botto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouzaut, S., Campodonico, V.A. & Pasquini, A.I. Weathering and paleoprecipitation indices in a Late Pleistocene–Holocene loess–paleosol sequence in central Argentina. Environ Earth Sci 80, 28 (2021). https://doi.org/10.1007/s12665-020-09324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-09324-5

Keywords

Navigation