Skip to main content
Log in

An improved TPM-based distribution network state estimation considering loads/DERs correlations

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes an improved probabilistic load and distributed energy resources (DERs) modeling as pseudo-measurements by considering the correlation to be used for distribution network state estimation. The two-point method (TPM) is applied for the modeling of pseudo-measurements. The proposed method has the ability to estimate the states of a distribution network with high accuracy and short computational time. To implement the proposed scheme, the probability density functions (PDFs) of uncertain loads and DERs at different buses are extracted using historical data. Then, the TPM achieves two concentration points at each bus from obtained PDFs. Finally, the weighted least squares state estimation method is utilized at these two concentration points to obtain the probabilistic distribution of output variables. To examine the effectiveness of the suggested model, simulations are carried out on IEEE 69-bus standard test system. The proposed TPM-based state estimation approach is then compared with other conventional methods such as the Gaussian-based model, Gaussian mixture model (GMM) and Monte Carlo simulation. The superiority of the proposed TPM-based state estimation model over the GMM and Gaussian model is confirmed by a significant decrease in the running time and a noteworthy increase in the accuracy of all estimated variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Home-Ortiz JM, Pourakbari-Kasmaei M, Lehtonen M, Mantovani JRS (2019) Optimal location-allocation of storage devices and renewable-based DG in distribution systems. Electr Power Syst Res 172:11–21

    Article  Google Scholar 

  2. Hadidian Moghaddam M et al (2018) Improved voltage unbalance and harmonics compensation control strategy for an isolated microgrid. Energies 11(10):2688

    Article  Google Scholar 

  3. Han X et al (2013) Real-time measurements and their effects on state estimation of distribution power system. In: IEEE PES ISGT Europe 2013. IEEE, pp 1–5

  4. Bordbari MJ, Seifi AR, Rastegar MJE (2018) Probabilistic energy consumption analysis in buildings using point estimate method. Energy 142:716–722

    Article  Google Scholar 

  5. Ahmad F et al (2018) Distribution system state estimation—a step towards smart grid. Renew Sustain Energy Rev 81:2659–2671

    Article  Google Scholar 

  6. Muscas C, Pau M, Pegoraro PA, Sulis SJITI (2014) Effects of measurements and pseudomeasurements correlation in distribution system state estimation. IEEE Trans Instrum Meas 63(12):2813–2823

    Article  Google Scholar 

  7. Ahmad F, Tariq M, Farooq A (2019) A novel ANN-based distribution network state estimator. Int J Electr Power Energy Syst 107:200–212

    Article  Google Scholar 

  8. Ju Y, Wu W, Ge F, Ma K, Lin Y, Ye L (2018) Fast decoupled state estimation for distribution networks considering branch ampere measurements. IEEE Trans Smart Grid 9(6):6338–6347

    Article  Google Scholar 

  9. Pau M, Ponci F, Monti A, Sulis S, Muscas C, Pegoraro PA (2017) An efficient and accurate solution for distribution system state estimation with multiarea architecture. IEEE Trans Instrum Meas 66(5):910–919

    Article  Google Scholar 

  10. Bretas A, Bretas N, Braunstein S, Rossoni A, Trevizan R (2017) Multiple gross errors detection, identification and correction in three-phase distribution systems WLS state estimation: a per-phase measurement error approach. Electr Power Syst Res 151:174–185

    Article  Google Scholar 

  11. Chen Y, Kong X, Yong C, Ma X, Yu L (2019) Distributed state estimation for distribution network with phasor measurement units information. Energy Proc 158:4129–4134

    Article  Google Scholar 

  12. Picallo M, Anta A, De Schutter B (2019) Comparison of bounds for optimal PMU placement for state estimation in distribution grids. IEEE Trans Power Syst 37:4837–4846

    Article  Google Scholar 

  13. Al-Wakeel A, Wu J, Jenkins N (2016) State estimation of medium voltage distribution networks using smart meter measurements. Appl Energy 184:207–218

    Article  Google Scholar 

  14. Melo ID, Pereira JL, Variz AM, Garcia PA (2017) Harmonic state estimation for distribution networks using phasor measurement units. Electr Power Syst Res 147:133–144

    Article  Google Scholar 

  15. Ni F, Nguyen P, Cobben J, Van den Brom H, Zhao D (2018) Three-phase state estimation in the medium-voltage network with aggregated smart meter data. Int J Electr Power Energy Syst 98:463–473

    Article  Google Scholar 

  16. Baran ME, Kelley AW (1994) State estimation for real-time monitoring of distribution systems. IEEE Trans Power Syst 9(3):1601–1609

    Article  Google Scholar 

  17. Li K (1996) State estimation for power distribution system and measurement impacts. IEEE Trans Power Syst 11(2):911–916

    Article  Google Scholar 

  18. Kekatos V, Giannakis GB (2012) Distributed robust power system state estimation. IEEE Trans Power Syst 28(2):1617–1626

    Article  Google Scholar 

  19. Wang G, Zamzam AS, Giannakis GB, Sidiropoulos ND (2018) Power system state estimation via feasible point pursuit: algorithms and Cramér-Rao bound. IEEE Trans Signal Process 66(6):1649–1658

    Article  MathSciNet  MATH  Google Scholar 

  20. Singh R, Pal BC, Jabr RA (2009) Choice of estimator for distribution system state estimation. IET Gen Trans Distrib 3(7):666–678

    Article  Google Scholar 

  21. Džafić I, Jabr RA, Hrnjić T (2018) Hybrid state estimation in complex variables. IEEE Trans Power Syst 33(5):5288–5296

    Article  Google Scholar 

  22. Baran ME, Kelley AW (1995) A branch-current-based state estimation method for distribution systems. IEEE Trans Power Syst 10(1):483–491

    Article  Google Scholar 

  23. Wang H, Schulz NN (2004) A revised branch current-based distribution system state estimation algorithm and meter placement impact. IEEE Trans Power Syst 19(1):207–213

    Article  Google Scholar 

  24. Sangrody H, Zhou N, Qiao X (2017) Probabilistic models for daily peak loads at distribution feeders. In: 2017 IEEE power and energy society general meeting. IEEE, pp 1–5

  25. Singh R, Pal BC, Jabr RA (2009) Statistical representation of distribution system loads using Gaussian mixture model. IEEE Trans Power Syst 25(1):29–37

    Article  Google Scholar 

  26. Barbeiro PP, Krstulovic J, Teixeira H, Pereira J, Soares FJ, Iria JP (2014) State estimation in distribution smart grids using autoencoders. In: IEEE 8th international power engineering and optimization conference (PEOCO2014). IEEE, pp 358–363

  27. Manitsas E, Singh R, Pal BC, Strbac G (2012) Distribution system state estimation using an artificial neural network approach for pseudo measurement modeling. IEEE Trans Power Syst 27(4):1888–1896

    Article  Google Scholar 

  28. Ghosh AK, Lubkeman DL, Jones RH (1997) Load modeling for distribution circuit state estimation. IEEE Trans Power Deliv 12(2):999–1005

    Article  Google Scholar 

  29. Liu Q et al (2017) Distribution system state estimation considering the uncertainty of DG output. In: IEEE conference on energy internet and energy system integration (EI2). IEEE, pp 1–6

  30. Duque FG, de Oliveira LW, de Oliveira EJ, Augusto AAJEPSR (2017) State estimator for electrical distribution systems based on an optimization model. Electr Power Syst Res 152:122–129

    Article  Google Scholar 

  31. Niknam T, Firouzi BBJRE (2009) A practical algorithm for distribution state estimation including renewable energy sources. Renew Energy 34(11):2309–2316

    Article  Google Scholar 

  32. Othman MM, Ahmed MH, Salama MMA (2019) A novel smart meter technique for voltage and current estimation in active distribution networks. Int J Electr Power Energy Syst 104:301–310

    Article  Google Scholar 

  33. Singh R, Pal BC, Jabr RA (2010) Distribution system state estimation through Gaussian mixture model of the load as pseudo-measurement. IET Gen Trans Distrib 4(1):50–59

    Article  Google Scholar 

  34. Meriem M, Bouchra C, Abdelaziz B, Jamal SOB, Nazha C (2016) Study of state estimation using weighted-least-squares method (WLS). In: International conference on electrical sciences and technologies in Maghreb (CISTEM). IEEE, pp 1–5

  35. Gomez-Exposito A, Abur A (2004) Power system state estimation: theory and implementation. CRC Press, Boca Raton

    Google Scholar 

  36. Kabiri M, Amjady N, Shafie-khah M, Catalão JP (2018) Enhancing power system state estimation by incorporating equality constraints of voltage dependent loads and zero injections. Int J Electr Power Energy Syst 99:659–671

    Article  Google Scholar 

  37. Yang X (2013) Distributed state estimation with the measurements of phasor measurement units. University of Birmingham

  38. Samet H, Khorshidsavar MJR (2018) Analytic time series load flow. Renew Sustain Energy Rev 82:3886–3899

    Article  Google Scholar 

  39. Saikia A, Mehta RK (2016) Power system static state estimation using Kalman filter algorithm. Int J Simul Multidiscip Des Optim 7:A7

    Article  Google Scholar 

  40. Carquex C (2017) State estimation in power distribution systems. Master’s thesis, University of Waterloo

  41. Wang H, Zhang W, Liu Y (2016) A robust measurement placement method for active distribution system state estimation considering network reconfiguration. IEEE Trans Smart Grid 9(3):2108–2117

    Google Scholar 

  42. Dehghanpour K, Wang Z, Wang J, Yuan Y, Bu F (2018) A survey on state estimation techniques and challenges in smart distribution systems. IEEE Trans Smart Grid 10(2):2312–2322

    Article  Google Scholar 

  43. Mohseni-Bonab SM, Rabiee A, Mohammadi-Ivatloo B, Jalilzadeh S, Nojavan S (2016) A two-point estimate method for uncertainty modeling in multi-objective optimal reactive power dispatch problem. Int J Electr Power Energy Syst 75:194–204

    Article  Google Scholar 

  44. Tung YK (2018) Effect of uncertainties on probabilistic-based design capacity of hydrosystems. J Hydrol 557:851–867

    Article  Google Scholar 

  45. Huber M, Maric N (2017) Bernoulli correlations and cut polytopes. arXiv preprint

  46. Zhao J, Wang S, Mili L, Amidan B, Huang R, Huang Z (2018) A robust state estimation framework considering measurement correlations and imperfect synchronization. IEEE Trans Power Syst 33(4):4604–4613

    Article  Google Scholar 

  47. Li Q, Li S, Xu B, Liu Y (2018) Data-driven attacks and data recovery with noise on state estimation of smart grid. J Franklin Inst

  48. Karimyan P, Gharehpetian GB, Abedi M, Gavili A (2014) Long term scheduling for optimal allocation and sizing of DG unit considering load variations and DG type. Int J Electric Power Energy Syst 54:277–287

    Article  Google Scholar 

  49. Zakerian A, Maleki A, Mohammadnian Y, Amraee T (2017) Bad data detection in state estimation using Decision Tree technique. In: 2017 Iranian Conference on electrical engineering (ICEE). IEEE, pp 1037–1042

  50. Sirisena H, Brown E (1983) Representation of non-Gaussian probability distributions in stochastic load-flow studies by the method of Gaussian sum approximations. IEE Proc C-Gen Trans Distrib 130(4):165–171

    Article  Google Scholar 

  51. Baran ME, Wu FF (1989) Optimal capacitor placement on radial distribution systems. IEEE Trans Power Deliv 4(1):725–734

    Article  Google Scholar 

  52. Geisler KI (1984) Ampere magnitude line measurements for power systems state estimation. IEEE Trans Power Appar Syst 8:1962–1969

    Article  Google Scholar 

  53. Feijoo AE, Cidras J (2000) Modeling of wind farms in the load flow analysis. IEEE Trans Power Syst 15(1):110–115

    Article  Google Scholar 

  54. O. A. http://www.mathworks.com, Matlab Statistical Toolbox 6, users Guide

  55. Valverde G, Saric AT, Terzija V (2012) Stochastic monitoring of distribution networks including correlated input variables. IEEE Trans Power Syst 28(1):246–255

    Article  Google Scholar 

  56. Johannesen NJ, Kolhe M, Goodwin M (2019) Relative evaluation of regression tools for urban area electrical energy demand forecasting. J Clean Prod 218:555–564

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Jurado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi, B., Ghadimi, A.A., Abolmasoumi, A.H. et al. An improved TPM-based distribution network state estimation considering loads/DERs correlations. Electr Eng 103, 1541–1553 (2021). https://doi.org/10.1007/s00202-020-01185-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01185-2

Keywords

Navigation