Skip to main content
Log in

Interactions Between Brassicae napus and Pseudomonas putida (Strain ATCC12633) and Characterization of Volatile Organic Compounds Produced by the Bacterium

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Brassica napus L. is a main oilseed crop cultivated around the world. Plant growth-promoting rhizobacteria (PGPR) are generally applied to a wide range of agricultural crops for the growth enhancement. In this study, an I-plate technique was used to investigate the plant growth-promoting activity of Pseudomonas putida (strain ATCC12633) on B. napus plants. The volatile organic compounds (VOCs) produced by P. putida were determined by gas chromatography-mass spectrometric (GC-MS) analysis. Furthermore, P. putida were evaluated for its efficacy to induce resistance-related enzymes like peroxidase (POD), phenylalanine ammonia-lyase (PAL), catalase (CAT), and other biochemical compounds such as proline (Pro) and hydrogen peroxide (H2O2) in B. napus plants. According to the results, P. putida significantly increased the growth of B. napus compared to control. The major VOCs released by P. putida were 2-Butynedioic acid, dimethyl ester, Dimethyl ester of 4,7-dimethylnaphthalene-1,2-dicarboxylic acid, N-[3-Methylaminopropyl]aziridine, Cyclododecane, and Hexadecanoic acid. B. napus seeds treatment with P. putida caused enhanced activities of POD, PAL, CAT, Pro, and H2O2 compared to control. So, the results of the present study showed that inoculation of B. napus with P. putida could serve as a useful tool for promoting the plant growth and inducing systemic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149. https://doi.org/10.1080/713610853

    Article  CAS  Google Scholar 

  2. Schrey SD, Hartmann A, Hampp R (2015) Rhizosphere interactions. In: Krauss GJ, Nies DH (eds) Ecological biochemistry: Environmental and interspecies interactions. Wiley, Weinheim, pp 293–310

    Google Scholar 

  3. Mhatre PH, Karthik C, Kadirvelu K, Divya KL, Venkatasalam EP, Srinivasan S, Ramkumar G, Saranya C, Shanmuganathan R (2019) Plant growth promoting rhizobacteria (PGPR): a potential alternative tool for nematodes bio-control. ISBAB 17:119–128. https://doi.org/10.1016/j.bcab.2018.11.009

    Article  Google Scholar 

  4. Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30:274–291. https://doi.org/10.1111/j.1574-6976.2005.00012.x

    Article  CAS  PubMed  Google Scholar 

  5. Glick BR, Ghosh S, Liu C, Dumbroff EB (1997) Effects of a plant growth-promoting rhizobacterium (Pseudomonas putida GR12-2) on the early growth of canola seedlings. Biol Root Format Dev:253–257. https://doi.org/10.1007/978-1-4615-5403-5_49

  6. Hernández-Montiel LG, Contreras CJC, Amador BM, Librado Vidal Hernández LV, Aguilar EEQ, Contreras RGC (2017) Efficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plants. J Soil Sci Plant Nutr 17:1003–1012. https://doi.org/10.4067/S0718-95162017000400012

    Article  Google Scholar 

  7. Afegbua SL, Batty LS (2019) Effect of plant growth promoting bacterium; Pseudomonas putida UW4 inoculation on phytoremediation efficacy of monoculture and mixed culture of selected plant species for PAH and lead spiked soils. Int J Phytoremediation 21:200–208. https://doi.org/10.1080/15226514.2018.1501334

    Article  CAS  PubMed  Google Scholar 

  8. Jishma P, Hussain N, Chellappan R, Rajendran R, Mathew J, Radhakrishnan EK (2017) Strain-specific variation in plant growth promoting volatile organic compounds production by five different Pseudomonas spp. as confirmed by response of Vigna radiata seedlings. J Appl Microbiol 123:204–216. https://doi.org/10.1111/jam.13474

    Article  CAS  PubMed  Google Scholar 

  9. Park YS, Dutta S, Ann M, Raaijmakers JM, Park K (2015) Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem Biophys Res Commun 461:361–365. https://doi.org/10.1016/j.bbrc.2015.04.039

    Article  CAS  PubMed  Google Scholar 

  10. Sheoran N, Nadakkakath AV, Munjal V, Kundu A, Subaharan K, Venugopal V, Rajamma S, Eapen SJ, Kumar A (2015) Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiol Res 173:66–78. https://doi.org/10.1016/j.micres.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  11. Lavania M, Chauhan PS, Chauhan SVS, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth–promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52:363–368. https://doi.org/10.1007/s00284-005-5578-2

    Article  CAS  PubMed  Google Scholar 

  12. Sattari Nasab R, Pahlavan Yali M, Bozorg-Amirkalaee M (2018) Effects of humic acid and plant growth-promoting rhizobacteria (PGPR) on induced resistance of canola to Brevicoryne brassicae L. Bull Entomol Res 109:479–489. https://doi.org/10.1017/S0007485318000779

    Article  CAS  PubMed  Google Scholar 

  13. Ahmed HE, Mohamed ZK, El-Dean ME, Farahat MG (2011) Induced systemic protection against tomato leaf spots (early leaf blight) and bacterial speck by rhizobacterial isolates. Egypt J Exp Biol 7:49–57 http://www.egyseb.org

    CAS  Google Scholar 

  14. Chen C, Belanger R, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Path 56:13–23. https://doi.org/10.1006/pmpp.1999.0243

    Article  CAS  Google Scholar 

  15. Tsunoda RT (1980) Backscatter measurements of 11-cm equatorial Spread-F irregularities. Geophys Res 7:848–850. https://doi.org/10.1029/GL007i010p00848

    Article  Google Scholar 

  16. EL Sabagh A, Abd El-Rasool S, Islam MS, Barutçular C, Omar A (2016) Improving growth of canola (Brassica napus L.) plants by seed inoculation and inorganic-organic nitrogen fertilization. Asian J Sci Technol (AJST) 7:2283–2288 https://www.researchgate.net/publication/292977594

    Google Scholar 

  17. Vejan P, Abdullah R, Khadiran T, Ismail S, Boyce AN (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules 21(5):E573. https://doi.org/10.3390/molecules21050573

    Article  CAS  PubMed  Google Scholar 

  18. Koca H, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351. https://doi.org/10.1016/j.envexpbot.2006.12.005

    Article  CAS  Google Scholar 

  19. Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x

    Article  CAS  Google Scholar 

  20. Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655. https://doi.org/10.1016/S0168-9452(03)00022-0

    Article  CAS  Google Scholar 

  21. Tatiana Z, Yamashita K, Matsumoto H (1999) Iron deficiency induced changes in ascorbate content and enzyme activities related to ascorbate metabolism in cucumber roots. Plant Cell Physiol 40:273–280. https://doi.org/10.1093/oxfordjournals.pcp.a029538

    Article  Google Scholar 

  22. Edwards R, Kessmann H (1992) Isoflavonoid phytoalexins and their biosynthetic enzymes. In: Gurr S, McPherson M, Bowles D (eds) Molecular plant pathology: a practical approach. Oxford University Press, Oxford, pp 45–62

    Google Scholar 

  23. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease suppressive bacteria. Science 332:1097–1100. https://doi.org/10.1126/science.1203980

    Article  CAS  PubMed  Google Scholar 

  24. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801. https://doi.org/10.1128/aem.68.8.3795-3801.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heng JLS, Zainual NSM (2017) Effect of encapsulated Pseudomonas putida strain PF1P on plant growth and its microbial ecosystem. Afr J Biotechnol 16:2009–2013. https://doi.org/10.5897/AJB2017.16164

    Article  CAS  Google Scholar 

  26. Khalko S, Bandyopadhyay S, Debnath A (2017) Effect of seed bacterization with fluorescent pseudomonads on growth promotion of jute (Corchorus olitorius) in Terai zone of West Bengal. Int J Curr Microbiol Appl Sci 6:3036–3043. https://doi.org/10.20546/ijcmas.2017.606.361

    Article  CAS  Google Scholar 

  27. Pandey P, Kang SC, Gupta CP, Maheshwari DK (2005) Rhizosphere competent Pseudomonas aeruginosa grc produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris). Curr Microbiol 51:303–309. https://doi.org/10.1007/s00284-005-0014-1

    Article  CAS  PubMed  Google Scholar 

  28. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moenne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:1–19. https://doi.org/10.3389/fpls.2013.00356

    Article  Google Scholar 

  29. Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798. https://doi.org/10.1046/j.1462-2920.2002.00369.x

    Article  CAS  PubMed  Google Scholar 

  30. Cuppels DA, Stipanovic RD, Stoessl A, Sothers JB (1987) The constitution and properties of a pyochelin–zinc complex. Can J Chem 65:2126–2130. https://doi.org/10.1139/v87-354

    Article  CAS  Google Scholar 

  31. Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 63:99–105. https://doi.org/10.1128/AEM.63.1.99-105.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Burd GI, Dixon GD, Glick BR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245. https://doi.org/10.1139/w99-143

    Article  CAS  PubMed  Google Scholar 

  33. Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida knp9. Curr Microbiol 50:233–237. https://doi.org/10.1007/s00284-004-4459-4

    Article  CAS  PubMed  Google Scholar 

  34. Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fert Soils 42:267–272. https://doi.org/10.1007/s00374-005-0024-y

    Article  CAS  Google Scholar 

  35. Glick BR (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. In: Overview of plant growth promoting bacteria. Imperial College Press, London, pp 1–13

    Google Scholar 

  36. Choi O, Kim J, Kim JG, Jeong Y, Moon JS, Park CS, Hwang I (2008) Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol 146:657–668. https://doi.org/10.1104/pp.107.112748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hernández-León R, Rojas-Solís D, Contreras-Pérez M, Orozco-Mosqueda MC, Macías-Rodríguez LI, Cruz HR, Valencia-Cantero E, Santoyo G (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92. https://doi.org/10.1016/j.biocontrol.2014.11.011

    Article  CAS  Google Scholar 

  38. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39. https://doi.org/10.1016/j.micres.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  39. Noor R, Islam Z, Munshi SM, Rahman F (2013) Influence of temperature on Escherichia coli growth in different culture media. J Pure Appl Microbiol 7:899–904 https://www.researchgate.net/publication/233761514

    Google Scholar 

  40. Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058. https://doi.org/10.1111/j.1462-2920.2011.02582.x

    Article  CAS  PubMed  Google Scholar 

  41. Nyenje ME, Green E, Ndip RN (2013) Evaluation of the effect of different growth media and temperature on the suitability of biofilm formation by Enterobacter cloacae strains isolated from food samples in South Africa. Molecules 18:9582–9593. https://doi.org/10.3390/molecules18089582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abbasiliasi S, Ramakrishnan NR, Tengku ATI, Shuhaimi M, Rosfarizan M, Hassan HMD, Arbakariya BA (2011) Effect of medium composition and culture condition on the production of bacteriocin-like inhibitory substances (BLIS) by Lactobacillus paracasei LA07, a strain isolated from Budu. Biotechnol Biotech Eq 25:2652–2657. https://doi.org/10.5504/BBEQ.2011.0101

    Article  CAS  Google Scholar 

  43. Chandrasekaran M, Kannathasan K, Venkatesalu V (2008) Antimicrobial activity of fatty acid methyl esters of some members of Chenopodiaceae. Z Naturforsch 63:331–336. https://doi.org/10.1515/znc-2008-5-604

    Article  CAS  Google Scholar 

  44. Kowalczyk A, Pieczonka AM, Rachwalski M, Lesniak S, Staczek P (2018) Synthesis and evaluation of biological activities of aziridine derivatives of urea and thiourea. Molecules 23:45. https://doi.org/10.3390/molecules23010045

    Article  CAS  Google Scholar 

  45. Sen S, Chandrasekhar CN (2015) Effect of PGPR on enzymatic activities of rice (Oryza sativa L.) under salt stress. Asian J Plant Sci Res 5:44–48 www.pelagiaresearchlibrary.com

    CAS  Google Scholar 

  46. Singh RP, Jha PN (2017) The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front Microbiol 8:1945. https://doi.org/10.3389/fmicb.2017.01945

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bruce RJ, West CA (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol 91:889–897. https://doi.org/10.1104/pp.91.3.889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Anand T, Chandrasekaran A, Kuttalam S, Raguchander T, Prakasam V, Samiyappan R (2007) Association of some plant defense enzyme activities with systemic resistance to early leaf blight and leaf spot induced in tomato plants by azoxystrobin and Pseudomonas fluorescens. J Plant Interact 2:233–244. https://doi.org/10.1080/17429140701708985

    Article  CAS  Google Scholar 

  49. Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395. https://doi.org/10.1016/S1369-5266(02)00282-0

    Article  CAS  PubMed  Google Scholar 

  50. Erdogan Ü, Çakmaci R, Varmazyari A, Turan M, Erdogan Y, Kitir N (2016) Role of inoculation with multi-trait rhizobacteria on strawberries under water deficit stress. Zemdirbyste-Agriculture 103:67–76. https://doi.org/10.13080/z-a.2016.103.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Pahlavan Yali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pahlavan Yali, M., Hajmalek, M. Interactions Between Brassicae napus and Pseudomonas putida (Strain ATCC12633) and Characterization of Volatile Organic Compounds Produced by the Bacterium. Curr Microbiol 78, 679–687 (2021). https://doi.org/10.1007/s00284-020-02335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02335-2

Navigation