Skip to main content
Log in

A partial least squares approach for function-on-function interaction regression

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

A partial least squares regression is proposed for estimating the function-on-function regression model where a functional response and multiple functional predictors consist of random curves with quadratic and interaction effects. The direct estimation of a function-on-function regression model is usually an ill-posed problem. To overcome this difficulty, in practice, the functional data that belong to the infinite-dimensional space are generally projected into a finite-dimensional space of basis functions. The function-on-function regression model is converted to a multivariate regression model of the basis expansion coefficients. In the estimation phase of the proposed method, the functional variables are approximated by a finite-dimensional basis function expansion method. We show that the partial least squares regression constructed via a functional response, multiple functional predictors, and quadratic/interaction terms of the functional predictors is equivalent to the partial least squares regression constructed using basis expansions of functional variables. From the partial least squares regression of the basis expansions of functional variables, we provide an explicit formula for the partial least squares estimate of the coefficient function of the function-on-function regression model. Because the true forms of the models are generally unspecified, we propose a forward procedure for model selection. The finite sample performance of the proposed method is examined using several Monte Carlo experiments and two empirical data analyses, and the results were found to compare favorably with an existing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilera AM, Ocana FA, Valderrama MJ (1999) Forecasting with unequally spaced data by a functional principal component approach. Test 8(1):233–254

    Article  MathSciNet  MATH  Google Scholar 

  • Aguilera AM, Escabias M, Preda C, Saporta G (2010) Using basis expansions for estimating functional PLS regression: applications with chemometric data. Chemom Intell Lab Syst 104(2):289–305

    Article  Google Scholar 

  • Aguilera AM, Escabias M, Preda C, Saporta G (2016) Penalized versions of functional PLS regression. Chemom Intell Lab Syst 154:80–92

    Article  Google Scholar 

  • Beyaztas U, Shang HL (2020) On function-on-function regression: partial least squares approach. Environ Ecol Stat 27(1):95–114

    Article  Google Scholar 

  • Chiou J-M, Müller HG, Wang JL (2004) Functional response models. Stat Sin 14:675–693

    MathSciNet  MATH  Google Scholar 

  • Chiou J-M, Yang Y-F, Chen Y-T (2016) Multivariate functional linear regression and prediction. J Multivar Anal 146:301–312

    Article  MathSciNet  MATH  Google Scholar 

  • Cuevas A (2014) A partial overview of the theory of statistics with functional data. J Stat Plan Inference 147:1–23

    Article  MathSciNet  MATH  Google Scholar 

  • Dayal BS, MacGregor JF (1997) Improved PLS algorithms. J Chemom 11(1):73–85

    Article  Google Scholar 

  • de Jong S (1993) SIMPLS: an alternative approach to partial least squares regression. Chemom Intell Lab Syst 18(3):251–263

    Article  Google Scholar 

  • de Lathuauwer L, de Moor B, Vandewalle J (2000) A multilinear singular value decomposition. SIAM J Matrix Anal Appl 21(4):1253–1278

    Article  MathSciNet  MATH  Google Scholar 

  • Delaigle A, Hall P (2012a) Achieving near perfect classification for functional data. J R Stat Soc Ser B 74(2):267–286

    Article  MathSciNet  MATH  Google Scholar 

  • Delaigle A, Hall P (2012b) Methodology and theory for partial least squares applied to functional data. Ann Stat 40(1):322–352

    Article  MathSciNet  MATH  Google Scholar 

  • Escabias M, Aguilera AM, Valderrama MJ (2007) Functional PLS logit regression model. Comput Stat Data Anal 51(10):4891–4902

    Article  MathSciNet  MATH  Google Scholar 

  • Escoufier Y (1970) Echantillonnage dans une population de variables aléatories réelles. Publications de I’Institut de Statistique de I’Université de Paris 19(4):1–47

    MathSciNet  MATH  Google Scholar 

  • Febrero-Bande M, Galeano P, Gozalez-Manteiga W (2017) Functional principal component regression and functional partial least-squares regression: an overview and a comparative study. Int Stat Rev 85(1):61–83

    Article  MathSciNet  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Springer, New York

    MATH  Google Scholar 

  • Fuchs K, Scheipl F, Greven S (2015) Penalized scalar-on-functions regression with interaction term. Comput Stat Data Anal 81:38–51

    Article  MATH  Google Scholar 

  • He G, Müller HG, Wang JL (2000) Extending correlation and regression from multivariate to functional data. In: Puri ML (ed) Asymptotics in statistics and probability. VSP International Science Publishers, Leiden, pp 197–210

    Google Scholar 

  • He G, Müller HG, Wang JL, Yang W (2010) Functional linear regression via canonical analysis. Bernoulli 16(3):705–729

    Article  MathSciNet  MATH  Google Scholar 

  • Horvath L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

    Book  MATH  Google Scholar 

  • Hsing T, Eubank R (2015) Theoretical foundations of functional data analysis, with an introduction to linear operators. Wiley, Chennai

    Book  MATH  Google Scholar 

  • Hyndman RJ, Shang HL (2009) Forecasting functional time series. J Korean Stat Soc 38(3):199–211

    Article  MathSciNet  MATH  Google Scholar 

  • Ivanescu AE, Staicu A-M, Scheipl F, Greven S (2015) Penalized function-on-function regression. Comput Stat 30(2):539–568

    Article  MathSciNet  MATH  Google Scholar 

  • Kokoszka P, Reimherr M (2017) Introduction to functional data analysis. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Krämer N, Boulesteix A-L, Tutz G (2008) Penalized partial least squares with applications to B-spline transformations and functional data. Chemom Intell Lab Syst 94(1):60–69

    Article  Google Scholar 

  • Luo R, Qi X (2018) FRegSigCom: functional regression using signal compression approach. R package version 0.3.0. https://CRAN.R-project.org/package=FRegSigCom

  • Luo R, Qi X (2019) Interaction model and model selection for function-on-function regression. J Comput Graph Stat 28(2):309–322

    Article  MathSciNet  Google Scholar 

  • Matsui H (2020) Quadratic regression for functional response models. Econom Stat 13:125–136

    MathSciNet  Google Scholar 

  • Matsui H, Kawano S, Konishi S (2009) Regularized functional regression modeling for functional response and predictors. J Math Ind 1(A3):17–25

    MathSciNet  MATH  Google Scholar 

  • Müller H-G, Yao F (2008) Functional additive models. J Am Stat Assoc 103(484):1534–1544

    Article  MathSciNet  MATH  Google Scholar 

  • Pan H (2011) , Bivariate B-splines and its applications in spatial data analysis. PhD thesis, Texas A&M University

  • Preda C, Saporta G (2005) PLS regression on a stochastic process. Comput Stat Data Anal 48(1):149–158

    Article  MathSciNet  MATH  Google Scholar 

  • Preda C, Saporta G, Lévéder C (2007) PLS classification of functional data. Comput Stat 22(2):223–235

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsay JO, Dalzell CJ (1991) Some tools for functional data analysis. J R Stat Soc B 53(3):539–572

    MathSciNet  MATH  Google Scholar 

  • Ramsay JO, Silverman BW (2002) Applied functional data analysis. Springer, New York

    MATH  Google Scholar 

  • Ramsay JO, Silverman BW (2006) Functional data analysis. Springer, New York

    MATH  Google Scholar 

  • Reiss PT, Ogden TR (2007) Functional principal component regression and functional partial least squares. J Am Stat Assoc 102(479):984–996

    Article  MathSciNet  MATH  Google Scholar 

  • Scheipl F, Greven S (2016) Identifiability in penalized function-on-function regression models. Electron J Stat 10:495–526

    Article  MathSciNet  MATH  Google Scholar 

  • Sun Y, Wang Q (2020) Function-on-function quadratic regression models. Comput Stat Data Anal 142, 106814

  • Tucker RS (1938) The reasons for price rigidity. Am Econ Rev 28(1):41–54

    Google Scholar 

  • Usset J, Staicu A-M, Maity A (2016) Interaction models for functional regression. Comput Stat Data Anal 94:317–329

    Article  MathSciNet  MATH  Google Scholar 

  • Wang W (2014) Linear mixed function-on-function regression models. Biometrics 70(4):794–801

    Article  MathSciNet  MATH  Google Scholar 

  • Wold H (1974) Causal flows with latent variables: partings of the ways in the light of NIPALS modelling. Eur Econ Rev 5(1):67–86

    Article  Google Scholar 

  • Wood SN, Bravington MV, Hedley SL (2008) Soap film smoothing. J R Stat Soc B 70(Part 5):931–955

    Article  MathSciNet  MATH  Google Scholar 

  • Yao F, Müller H-G (2010) Functional quadratic regression. Biometrika 97(1):49–64

    Article  MathSciNet  MATH  Google Scholar 

  • Yao F, Müller H-G, Wang J-L (2005) Functional linear regression analysis for longitudinal data. Ann Stat 33(6):2873–2903

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous referees for their careful reading of our manuscript and valuable suggestions and comments, which have helped us produce a much-improved paper. The authors also acknowledge Dr. Ruiyan Luo and Dr. Xin Qi at Georgia State University for assistance with R code in the simulation studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ufuk Beyaztas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Identifiability of the proposed model

Model identifiability, which is an important theme in the estimation phase, for the function-on-function regression model with only main effects given in (1.1) was theoretically discussed by He et al. (2000) and Chiou et al. (2004). Later, Scheipl and Greven (2016) discussed the identifiability of such models with realistic applications. As is stated in the Proposition 3.1 of Scheipl and Greven (2016), the coefficient function \(\beta _m(s,t)\) in (1.1) is identifiable if and only if the kernel space of the covariance operator of the functional predictors (\(K^{{\mathcal {X}}}\)) is empty except the zero function, i.e., \(ke(K^{{\mathcal {X}}}) = \lbrace 0 \rbrace \). Luo and Qi (2019) extended the theoretical condition of model identifiability for function-on-function regression with only main effects to the model with interaction and quadratic effects. They defined the following \(\lbrace p (p + 3)/2 \rbrace \times \lbrace p (p+3)/2 \rbrace \) dimensional covariance matrix of the predictor functions:

$$\begin{aligned} \pmb {\Sigma } = \begin{bmatrix} \pmb {A}(s,r) &{}\quad \pmb {B}(s,r,u) \\ \pmb {B}^\top (s,r,u) &{}\quad \pmb {C}(s, r, s^\prime , r^\prime ) \end{bmatrix}, \end{aligned}$$
(5.9)

where the \(p \times p\) and \(p \times \lbrace p (p+1)/2 \rbrace \) dimensional submatrices \(\pmb {A}(s,r)\) and \(\pmb {B}(s,r,u)\) equal to \(\text {Cov} \left( {\mathcal {X}}(s) {\mathcal {X}}(r) \right) \) and \(\text {Cov} \left( {\mathcal {X}}(s), {\mathcal {X}}(r) {\mathcal {X}}(u) \right) \), respectively. The \(\lbrace p (p+1)/2 \rbrace \times \lbrace p (p+1)/2 \rbrace \) dimensional matrix \(\pmb {C}(s, r, s^\prime , r^\prime )\) equals to \(\text {Cov} \left( {\mathcal {X}}(s) {\mathcal {X}}(r), {\mathcal {X}}(s^\prime ) {\mathcal {X}}(r^\prime ) \right) \). Then, Luo and Qi (2019) proved that the coefficients in model (1.3) are identifiable if the kernel space of \(\pmb {\Sigma }\) in (5.9) only has the zero function. Please see Proposition S.1. of Luo and Qi (2019) for the proof. Based on the above, our proposed method given in (2.4) is also identifiable since the proposed method is a reformulated version of the model (1.3).

1.2 Proof of Proposition (2.2)

Proof

The proof of Proposition (2.2) is an extended version of the proof of Proposition 2 of Aguilera et al. (2010). Denote by \(\Lambda = \pmb {\Phi }^{1/2} \pmb {c}\) and \(\Pi = \pmb {\Psi }^{1/2} \pmb {d}\) the column random vectors.

For any random variable \(Z \in \mathcal {L}_2[0,1]\), the followings hold when \(h = 1\):

$$\begin{aligned} W^{{\mathcal {Y}}} =\,&\int _0^1 \sum _{k=1}^{K_{{\mathcal {Y}}}} c_k \phi _k(t) \mathbb {E} \left[ \sum _{i=1}^{K_{{\mathcal {Y}}}} Z c_i \phi _i(t) \right] dt = \Lambda ^\top \mathbb {E} \left[ \Lambda Z \right] = W^{\Lambda } Z, \\ W^{\pmb {{\mathcal {X}}}} =\,&\int _0^1 \int _0^1 \sum _{j=1}^{K_{\pmb {{\mathcal {X}}}}} \sum _{l=1}^{K_{\pmb {{\mathcal {X}}}}} d_{jl} \psi _{jl}(s,r) \mathbb {E} \left[ \sum _{\iota = 1}^{K_{\pmb {{\mathcal {X}}}}} \sum _{\tau = 1}^{K_{\pmb {{\mathcal {X}}}}} Zd_{\iota \tau } \psi _{\iota \tau }(s,r) \right] \\&\quad ds dr = \Pi ^\top \mathbb {E} \left[ \Pi Z \right] = W^{\Pi } Z. \end{aligned}$$

The residuals obtained from the first iteration are given by:

$$\begin{aligned}&{\left\{ \begin{array}{ll} {\mathcal {Y}}_1(t) = {\mathcal {Y}}(t) - \zeta _1(t) \eta _1, &{} \zeta _1(t) \in \mathcal {L}_2[0,1] \\ \Lambda _1 = \Lambda - \widetilde{\zeta }_1 \eta _1, &{} \widetilde{\zeta _1} \in \mathbb {R}^{K_{{\mathcal {Y}}}} \end{array}\right. } \\&{\left\{ \begin{array}{ll} \pmb {{\mathcal {X}}}_1(s,r) = \pmb {{\mathcal {X}}}(s,r) - p_1(s,r) \eta _1, &{} p_1(s,r) \in \mathcal {L}_2[0,1] \\ \Pi _1 = \Pi - \widetilde{p}_1 \eta _1, &{} \widetilde{p}_1 \in \mathbb {R}^{K_{\pmb {{\mathcal {X}}}}^2} \end{array}\right. } \end{aligned}$$

Then, we have \(\Lambda _1 = \pmb {\Phi }^{1/2} \pmb {c}_1\) and \(\Pi _1 = \pmb {\Psi }^{1/2} \pmb {d}_1\), where \(\pmb {c}_1\) and \(\pmb {d}_1\) are the random vectors of the basis coefficients of \({\mathcal {Y}}_1(t)\) and \(\pmb {{\mathcal {X}}}_1(s,r)\), respectively. For functional PLS, the residuals calculated from the first iteration are as follows:

$$\begin{aligned} {\mathcal {Y}}_1(t) =\,&\sum _{k=1}^{K_{{\mathcal {Y}}}} c_{1,k} \phi _k(t) = \pmb {c}_1^\top \pmb {\Phi }(t), \qquad \forall t \in \mathcal {L}_2[0,1],\\ \pmb {{\mathcal {X}}}_1(s,r) =\,&\sum _{j=1}^{K_{\pmb {{\mathcal {X}}}}} \sum _{l=1}^{K_{\pmb {{\mathcal {X}}}}} d_{1,jl} \psi _{jl}(s,r) = \pmb {d}_1^\top \pmb {\Psi }(s,r), \qquad \forall s,r \in \mathcal {L}_2[0,1]. \end{aligned}$$

On the other hand, the residuals from the PLS regression are obtained as follows:

$$\begin{aligned} {\mathcal {Y}}_1(t) =\,&\pmb {\Phi }^\top (t) \pmb {c} - \eta _1 \frac{\mathbb {E} \left[ \pmb {\Phi }^\top (t) \pmb {c} \eta _1 \right] }{\mathbb {E} \left[ \eta _1^2\right] },\\ \pmb {{\mathcal {X}}}_1(s,r) =\,&\pmb {\Psi }^\top (s,r) \pmb {d} - \eta _1 \frac{\mathbb {E} \left[ \pmb {\Psi }^\top (s,r) \pmb {d} \eta _1 \right] }{\mathbb {E} \left[ \eta _1^2 \right] }, \\ \Lambda _1 =\,&\pmb {\Phi }^{1/2} \pmb {c} - \eta _1 \frac{\mathbb {E} \left[ \pmb {\Phi }^{1/2} \pmb {c} \eta _1 \right] }{\mathbb {E} \left[ \eta _1^2 \right] },\\ \Pi _1 =\,&\pmb {\Psi }^{1/2} \pmb {d} - \eta _1 \frac{\mathbb {E} \left[ \pmb {\Psi }^{1/2} \pmb {d} \eta _1 \right] }{\mathbb {E} \left[ \eta _1^2 \right] } \end{aligned}$$

and thus we have \(\pmb {c}_1 = \pmb {c} - \eta _1 \frac{\mathbb {E} \left( \pmb {c} \eta _1 \right) }{\mathbb {E} \left[ \eta _1^2 \right] }\) and \(\pmb {d}_1 = \pmb {d} - \eta _1 \frac{\mathbb {E} \left[ \pmb {d} \eta _1 \right] }{\mathbb {E} \left[ \eta _1^2 \right] }\), that is, \(W^{{\mathcal {Y}}_1} = W^{\Lambda _1}\) and \(W^{\pmb {{\mathcal {X}}}_1} = W^{\Pi _1}\). Now, assuming \(W^{{\mathcal {Y}}_{\ell }} = W^{\Lambda _{\ell }}\) and \(W^{\pmb {{\mathcal {X}}}_{\ell }} = W^{\Pi _{\ell }}\) for each \(\ell \le h\). Also, let us assume that \(W^{{\mathcal {Y}}_{h+1}} = W^{\Lambda _{h+1}}\) and \(W^{\pmb {{\mathcal {X}}}_{h+1}} = W^{\Pi _{h+1}}\). Then, at step \(h+1\) the followings hold:

$$\begin{aligned}&{\left\{ \begin{array}{ll} {\mathcal {Y}}_{h+1}(t) = {\mathcal {Y}}(t) - \zeta _1(t) \eta _1 - \cdots - \zeta _h(t) \eta _h, &{} \zeta _i(t) \in \mathcal {L}_2[0,1] \\ \Lambda _{h+1} = \Lambda - \widetilde{\zeta }_1 \eta _1 - \cdots - \widetilde{\zeta }_h \eta _h, &{} \widetilde{\zeta _i} \in \mathbb {R}^{K_{{\mathcal {Y}}}} \end{array}\right. } \\&{\left\{ \begin{array}{ll} \pmb {{\mathcal {X}}}_{h+1}(s,r) = \pmb {{\mathcal {X}}}(s,r) - p_1(s,r) \eta _1 - \cdots - p_h(s,r) \eta _h, &{} p_i(s,r) \in \mathcal {L}_2[0,1] \\ \Pi _{h+1} = \Pi - \widetilde{p}_1 \eta _1 - \cdots - \widetilde{p}_h \eta _h, &{} \widetilde{p}_i \in \mathbb {R}^{K_{\pmb {{\mathcal {X}}}}^2} \end{array}\right. } \end{aligned}$$

As for \(h=1\) and using the orthogonality of \(\eta _i\) for \(i = 1, \ldots , h\), it is shown that \(\Lambda _{h+1} = \pmb {\Phi }^{1/2} \pmb {c}_{h+1}\) and \(\Pi _{h+1} = \pmb {\Psi }^{1/2} \pmb {d}_{h+1}\), which concludes the proof. \(\square \)

1.3 Station names for the North Dakota weather data

See Table 4.

Table 4 Station names for the North Dakota weather data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyaztas, U., Shang, H.L. A partial least squares approach for function-on-function interaction regression. Comput Stat 36, 911–939 (2021). https://doi.org/10.1007/s00180-020-01058-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-020-01058-z

Keywords

Navigation