Skip to main content
Log in

Processing of intraspecific chemical signals in the rodent brain

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In the rodent brain, the central processing of ecologically relevant chemical stimuli involves many different areas located at various levels within the neuraxis: the main and accessory olfactory bulbs, some nuclei in the amygdala, the hypothalamus, and brainstem. These areas allow the integration of the chemosensory stimuli with other sensory information and the selection of the appropriate neurohormonal and behavioral response. This review is a brief introduction to the processing of intraspecific chemosensory stimuli beyond the secondary projection, focusing on the activity of the relevant amygdala and hypothalamic nuclei, namely the medial amygdala and ventromedial hypothalamus. These areas are involved in the appropriate interpretation of chemosensory information and drive the selection of the proper response, which may be behavioral or hormonal and may affect the neural activity of other areas in the telencephalon and brainstem.

Recent data support the notion that the processing of intraspecific chemical signals is not unique to one chemosensory system and some molecules may activate both the main and the accessory olfactory system. Moreover, both these systems have mixed projections and cooperate for the correct identification of the stimuli and selection of relevant responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AOB:

Accessory olfactory bulb

GnRH:

Gonadotropin-releasing hormone

LH:

Luteinizing hormone

MOB:

Main olfactory bulb

References

  • Baum MJ, Cherry JA (2015) Processing by the main olfactory system of chemosignals that facilitate mammalian reproduction. Horm Behav 68:53–64

    CAS  PubMed  Google Scholar 

  • Baum MJ, Kelliher KR (2009) Complementary roles of the main and accessory olfactory systems in mammalian mate recognition. Ann Rev Physiol 71:141–160

    CAS  Google Scholar 

  • Beltramino C, Taleisnik S (1985) Ventral premammillary nuclei mediate pheromonal-induced LH release stimuli in the rat. Neuroendocrinology 41:119–124

    CAS  PubMed  Google Scholar 

  • Bergan JF, Ben-Shaul Y, Dulac C (2014) Sex-specific processing of social cues in the medial amygdala. Elife 3:e02743

    PubMed  PubMed Central  Google Scholar 

  • Bian X, Yanagawa Y, Chen WR, Luo M (2008) Cortical-like functional organization of the pheromone-processing circuits in the medial amygdala. J Neurophysiol 99:77–86

    PubMed  Google Scholar 

  • Boehm U, Zou Z, Buck LB (2005) Feedback loops link odor and pheromone signaling with reproduction. Cell 123:683–695

    CAS  PubMed  Google Scholar 

  • Brennan P, Kaba H, Keverne EB (1990) Olfactory recognition: a simple memory system. Science 250:1223–1226

    CAS  PubMed  Google Scholar 

  • Canteras NS, Kroon JA, Do-Monte FH, Pavesi E, Carobrez AP (2008) Sensing danger through the olfactory system: the role of the hypothalamic dorsal premammillary nucleus. Neurosci Biobehav Rev 32:1228–1235

    CAS  PubMed  Google Scholar 

  • Carvalho VM, Nakahara TS, Cardozo LM, Souza MA, Camargo AP, Trintinalia GZ, Ferraz E, Papes F (2015) Lack of spatial segregation in the representation of pheromones and kairomones in the mouse medial amygdala. Front Neurosci 9:283

    PubMed  PubMed Central  Google Scholar 

  • Carvalho VMA, Nakahara TS, Souza MAA, Cardozo LM, Trintinalia GZ, Pissinato LG, Venancio JO, Stowers L, Papes F (2020) Representation of olfactory information in organized active neural ensembles in the hypothalamus. Cell Rep 32:108061

    CAS  PubMed  Google Scholar 

  • Chen AX, Yan JJ, Zhang W, Wang L, Yu ZX, Ding XJ, Wang DY, Zhang M, Zhang YL, Song N, Jiao ZL, Xu C, Zhu SJ, Xu XH (2020) Specific Hypothalamic Neurons Required for Sensing Conspecific Male Cues Relevant to Inter-male Aggression. Neuron 12:S0896–6273(20)30656–5

  • Choi GB, Dong HW, Murphy AJ, Valenzuela DM, Yancopoulos GD, Swanson LW, Anderson DJ (2005) Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus. Neuron 46:647–660

    CAS  PubMed  Google Scholar 

  • Contreras CM, Gutiérrez-García AG, Molina-Jiménez T, Mendoza-López R (2012) 2-Heptanone increases the firing rate of the basal amygdala: role of anterior olfactory epithelial organs. Neuropsychobiology 66:167–173

    CAS  PubMed  Google Scholar 

  • Demir E, Li K, Bobrowski-Khoury N, Sanders JI, Beynon RJ, Hurst JL, Kepecs A, Axel R (2020) The pheromone darcin drives a circuit for innate and reinforced behaviours. Nature 578:137–141

    CAS  PubMed  Google Scholar 

  • Dessì-Fulgheri F, Lupo C (1982) Odour of male and female rats changes hypothalamic aromatase and 5 alpha-reductase activity and plasma sex steroid levels in unisexually reared male rats. Physiol Behav 28:231–235

    PubMed  Google Scholar 

  • Dielenberg RA, Hunt GE, McGregor IS (2001) “When a rat smells a cat”: the distribution of Fos immunoreactivity in rat brain following exposure to a predatory odor. Neuroscience 104:1085–1097

    CAS  Google Scholar 

  • Fan S, Luo M (2009) The organization of feedback projections in a pathway important for processing pheromonal signals. Neuroscience 161:489–500

    CAS  PubMed  Google Scholar 

  • Ferrero DM, Moeller LM, Osakada T, Horio N, Li Q, Roy DS, Cichy A, Spehr M, Touhara K, Liberles SD (2013) A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature 502:368–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grigorjev C, Munaro N (1999) Time-dependent GABA-ergic activity in olfactory bulb and hypothalamus of proestrus rats. Brain Res Bull 48:569–572

    CAS  PubMed  Google Scholar 

  • Gothard KM (2020) Multidimensional processing in the amygdala. Nat Rev Neurosci 21:565–575

    PubMed  PubMed Central  Google Scholar 

  • Guillamón A, Segovia S (1997) Sex differences in the vomeronasal system. Brain Res Bull 44:377–382

    PubMed  Google Scholar 

  • Hellier V, Brock O, Candlish M, Desroziers E, Aoki M, Mayer C, Piet R, Herbison A, Colledge WH, Prévot V, Boehm U, Bakker J (2018) Female sexual behavior in mice is controlled by kisspeptin neurons. Nat Commun 9:400

    PubMed  PubMed Central  Google Scholar 

  • Holy TE (2018) The accessory olfactory system: innately specialized or microcosm of mammalian circuitry? Annu Rev Neurosci 41:501–525

    CAS  PubMed  Google Scholar 

  • Inagaki H, Kiyokawa Y, Tamogami S, Watanabe H, Takeuchi Y, Mori Y (2014) Identification of a pheromone that increases anxiety in rats. Proc Natl Acad Sci U S A 111:18751–18756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii KK, Osakada T, Mori H, Miyasaka N, Yoshihara Y, Miyamichi K, Touhara K (2017) A labeled-line neural circuit for pheromone-mediated sexual behaviors in mice. Neuron 95:123-137.e8

    CAS  PubMed  Google Scholar 

  • Kammel LG, Correa SM (2020) Selective sexual differentiation of neurone populations may contribute to sex-specific outputs of the ventromedial nucleus of the hypothalamus. J Neuroendocrinol 32:e12801

    CAS  PubMed  Google Scholar 

  • Kang N, Baum MJ, Cherry JA (2009) A direct main olfactory bulb projection to the “vomeronasal” amygdala in female mice selectively responds to volatile pheromones from males. Eur J Neurosci 29:624–634

    PubMed  PubMed Central  Google Scholar 

  • Keshavarzi S, Sullivan RK, Ianno DJ, Sah P (2014) Functional properties and projections of neurons in the medial amygdala. J Neurosci 34:8699–86715

    PubMed  PubMed Central  Google Scholar 

  • Kim DW, Yao Z, Graybuck LT, Kim TK, Nguyen TN, Smith KA, Fong O, Yi L, Koulena N, Pierson N, Shah S, Lo L, Pool AH, Oka Y, Pachter L, Cai L, Tasic B, Zeng H, Anderson DJ (2019) multimodal analysis of cell types in a hypothalamic node controlling social behavior. Cell 179:713-728.e17

    CAS  PubMed  PubMed Central  Google Scholar 

  • King BM (2006) The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol Behav 87:221–244

    CAS  PubMed  Google Scholar 

  • Kippin TE, Cain SW, Pfaus JG (2003) Estrous odors and sexually conditioned neutral odors activate separate neural pathways in the male rat. Neuroscience 117:971–979

    CAS  PubMed  Google Scholar 

  • Kiyokawa Y, Kikusui T, Takeuchi Y, Mori Y (2005) Mapping the neural circuit activated by alarm pheromone perception by c-Fos immunohistochemistry. Brain Res 1043:145–154

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Kiyokawa Y, Takeuchi Y, Mori Y (2015) Neural correlates underlying naloxone-induced amelioration of sexual behavior deterioration due to an alarm pheromone. Front Neurosci 9:52

    PubMed  PubMed Central  Google Scholar 

  • Krauzlis RJ, Lovejoy LP, Zénon A (2013) Superior colliculus and visual spatial attention. Annu Rev Neurosci 36:165–182

    CAS  PubMed  Google Scholar 

  • Larriva-Sahd J (2008) The accessory olfactory bulb in the adult rat: a cytological study of its cell types, neuropil, neuronal modules, and interactions with the main olfactory system. J Comp Neurol 510:309–350

    PubMed  Google Scholar 

  • Larriva-Sahd J, Rondán A, Orozco-Estévez H, Sánchez-Robles MR (1993) Evidence of a direct projection of the vomeronasal organ to the medial preoptic nucleus and hypothalamus. Neurosci Lett 163:45–49

    CAS  PubMed  Google Scholar 

  • Li CS, Kaba H, Saito H, Seto K (1989) Excitatory influence of the accessory olfactory bulb on tuberoinfundibular arcuate neurons of female mice and its modulation by oestrogen. Neuroscience 29:201–208

    CAS  PubMed  Google Scholar 

  • Liu Q, Zhang Y, Wang P, Guo X, Wu Y, Zhang JX, Huang L (2019) Two preputial gland-secreted pheromones evoke sexually dimorphic neural pathways in the mouse vomeronasal system. Front Cell Neurosci 13:455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lo L, Yao S, Kim DW, Cetin A, Harris J, Zeng H, Anderson DJ, Weissbourd B (2019) Connectional architecture of a mouse hypothalamic circuit node controlling social behavior. Proc Natl Acad Sci U S A 116:7503–7512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luiten PG, Koolhaas JM, de Boer S, Koopmans SJ (1985) The cortico-medial amygdala in the central nervous system organization of agonistic behavior. Brain Res 332:283–297

    CAS  PubMed  Google Scholar 

  • Martinez-Marcos A (2009) On the organization of olfactory and vomeronasal cortices. Prog Neurobiol 87:21–30

    PubMed  Google Scholar 

  • Marshall DA, Maruniak JA (1986) Masera’s organ responds to odorants. Brain Res 366:329–332

    CAS  PubMed  Google Scholar 

  • Matsuo T, Hattori T, Asaba A, Inoue N, Kanomata N, Kikusui T, Kobayakawa R, Kobayakawa K (2015) Genetic dissection of pheromone processing reveals main olfactory system-mediated social behaviors in mice. Proc Natl Acad Sci U S A 112:E311–E332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews GA, Patel R, Walsh A, Davies O, Martínez-Ricós J et al (2013) Mating increases neuronal tyrosine hydroxylase expression and selectively gates transmission of male chemosensory information in female mice. PLoS ONE 8:e69943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mills EGA, O’Byrne KT, Comninos AN (2019) Kisspeptin as a behavioral hormone. Semin Reprod Med 37:56–63

    CAS  PubMed  Google Scholar 

  • Mohedano-Moriano A, Pro-Sistiaga P, Ubeda-Bañon I, de la Rosa-Prieto C, Saiz-Sanchez D, Martinez-Marcos A (2008) V1R and V2R segregated vomeronasal pathways to the hypothalamus. NeuroReport 19:1623–1626

    CAS  PubMed  Google Scholar 

  • Mucignat-Caretta C, Colivicchi MA, Fattori M, Ballini C, Bianchi L, Gabai G, Cavaggioni A, Della Corte L (2006) Species-specific chemosignals evoke delayed excitation of the vomeronasal amygdala in freely-moving female rats. J Neurochem 99:881–891

    CAS  PubMed  Google Scholar 

  • Mucignat-Caretta C, Caretta A (2014) Message in a bottle: major urinary proteins and their multiple roles in mouse intraspecific chemical communication. Anim Behav 97:255–263

    Google Scholar 

  • Mucignat-Caretta C, Cavaggioni A, Redaelli M, Da Dalt L, Zagotto G, Gabai G (2014) Age and isolation influence steroids release and chemical signaling in male mice. Steroids 83:10–16

    CAS  PubMed  Google Scholar 

  • Osakada T, Ishii KK, Mori H, Eguchi R, Ferrero DM, Yoshihara Y, Liberles SD, Miyamichi K, Touhara K (2018) Sexual rejection via a vomeronasal receptor-triggered limbic circuit. Nat Commun 9:4463

    PubMed  PubMed Central  Google Scholar 

  • Otero-García M, Agustín-Pavón C, Lanuza E, Martínez-García F (2016) Distribution of oxytocin and co-localization with arginine vasopressin in the brain of mice. Brain Struct Funct 221:3445–3473

    PubMed  Google Scholar 

  • Pérez-Gómez A, Bleymehl K, Stein B, Pyrski M, Birnbaumer L, Munger SD, Leinders-Zufall T, Zufall F, Chamero P (2015) Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus. Curr Biol 25(10):1340–1346

    PubMed  PubMed Central  Google Scholar 

  • Polston EK, Gu G, Simerly RB (2004) Neurons in the principal nucleus of the bed nuclei of the stria terminalis provide a sexually dimorphic GABAergic input to the anteroventral periventricular nucleus of the hypothalamus. Neuroscience 123:793–803

    CAS  PubMed  Google Scholar 

  • Pro-Sistiaga P, Mohedano-Moriano A, Ubeda-Bañon I, Del Mar A-J, Marcos P, Artacho-Pérula E, Crespo C, Insausti R, Martinez-Marcos A (2007) Convergence of olfactory and vomeronasal projections in the rat basal telencephalon. J Comp Neurol 504:346–362

    PubMed  Google Scholar 

  • Risold PY, Swanson LW (1995) Evidence for a hypothalamothalamocortical circuit mediating pheromonal influences on eye and head movements. Proc Natl Acad Sci U S A 92:3898–3902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts SA, Prescott MC, Davidson AJ, McLean L, Beynon RJ, Hurst JL (2018) Individual odour signatures that mice learn are shaped by involatile major urinary proteins (MUPs). BMC Biol 16:48

    PubMed  PubMed Central  Google Scholar 

  • Roppolo D, Ribaud V, Jungo VP, Lüscher C, Rodriguez I (2006) Projection of the Grüneberg ganglion to the mouse olfactory bulb. Eur J Neurosci 23:2887–2894

    PubMed  Google Scholar 

  • Samuelsen CL, Meredith M (2011) Oxytocin antagonist disrupts male mouse medial amygdala response to chemical-communication signals. Neuroscience 180:96–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Andrade G, Kendrick KM (2009) The main olfactory system and social learning in mammals. Behav Brain Res 200:323–335

    PubMed  Google Scholar 

  • Saper CB, Lowell BB (2014) The hypothalamus. Curr Biol 24:R1111–R1116

    CAS  PubMed  Google Scholar 

  • Schmid T, Boehm U, Braun T (2020) GnRH neurogenesis depends on embryonic pheromone receptor expression. Mol Cell Endocrinol. 2020 Sep 12:111030. doi: https://doi.org/10.1016/j.mce.2020.111030. Online ahead of print.

  • Schoeller EL, Clark DD, Dey S, Cao NV, Semaan SJ, Chao LW, Kauffman AS, Stowers L, Mellon PL (2016) Bmal1 is required for normal reproductive behaviors in male mice. Endocrinology 157:4914–4929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seeley WW (2019) The Salience Network: A Neural System for Perceiving and Responding to Homeostatic Demands. J Neurosci 39:9878-9882

  • Smithson KG, Weiss ML, Hatton GI (1992) Supraoptic nucleus afferents from the accessory olfactory bulb: evidence from anterograde and retrograde tract tracing in the rat. Brain Res Bull 29:209–220

    CAS  PubMed  Google Scholar 

  • Spehr M, Spehr J, Ukhanov K, Kelliher KR, Leinders-Zufall T, Zufall F (2006) Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell Mol Life Sci 63:1476–1484

    CAS  PubMed  Google Scholar 

  • Tachikawa KS, Yoshihara Y, Kuroda KO (2013) Behavioral transition from attack to parenting in male mice: a crucial role of the vomeronasal system. J Neurosci 33:5120–5126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner BH, Herkenham M (1991) Thalamoamygdaloid projections in the rat: a test of the amygdala’s role in sensory processing. J Comp Neurol 313:295–325

    CAS  PubMed  Google Scholar 

  • Veyrac A, Wang G, Baum MJ, Bakker J (2011) The main and accessory olfactory systems of female mice are activated differentially by dominant versus subordinate male urinary odors. Brain Res 1402:20–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wacker D, Ludwig M (2019) The role of vasopressin in olfactory and visual processing. Cell Tissue Res 375:201–215

    CAS  PubMed  Google Scholar 

  • Wacker DW, Engelmann M, Tobin VA, Meddle SL, Ludwig M (2011) Vasopressin and social odor processing in the olfactory bulb and anterior olfactory nucleus. Ann N Y Acad Sci 1220:106–116. https://doi.org/10.1111/j.1749-6632.2010.05885.x

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Ikegami K, Ishigaki R, Ieda N, Uenoyama Y, Maeda KI, Tsukamura H, Inoue N (2017) Enhancement of the luteinising hormone surge by male olfactory signals is associated with anteroventral periventricular Kiss1 cell activation in female rats. J Neuroendocrinol 29(8)

  • Weiler E, Farbman AI (2003) The septal organ of the rat during postnatal development. Chem Senses 28:581–593

    PubMed  Google Scholar 

  • Wen S, Götze IN, Mai O, Schauer C, Leinders-Zufall T, Boehm U (2011) Genetic identification of GnRH receptor neurons: a new model for studying neural circuits underlying reproductive physiology in the mouse brain. Endocrinology 152:1515–1526

    CAS  PubMed  Google Scholar 

  • Wyatt TD. Introduction to Chemical Signaling in Vertebrates and Invertebrates. In: Mucignat-Caretta C, editor. Neurobiology of Chemical Communication. Boca Raton (FL): CRC Press/Taylor & Francis; 2014. Chapter 1.

  • Wyatt TD (2017) Pheromones. Curr Biol 27:R739–R743

    CAS  PubMed  Google Scholar 

  • Yang T, Yang CF, Chizari MD, Maheswaranathan N, Burke KJ Jr, Borius M, Inoue S, Chiang MC, Bender KJ, Ganguli S, Shah NM (2017) Social control of hypothalamus-mediated male aggression. Neuron 95:955–970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yokosuka M, Matsuoka M, Ohtani-Kaneko R, Iigo M, Hara M, Hirata K, Ichikawa M (1999) Female-soiled bedding induced fos immunoreactivity in the ventral part of the premammillary nucleus (PMv) of the male mouse. Physiol Behav 68:257–261

    CAS  PubMed  Google Scholar 

  • Zuloaga DG, Heck AL, De Guzman RM, Handa RJ (2020) Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol Sex Differ 11:44

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I express my gratitude to an anonymous Reviewer who greatly contributed in expanding the initial version of this work through positive and proactive comments. I also thank Antonio Caretta for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Mucignat-Caretta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any original studies with human participants or animals performed by the author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mucignat-Caretta, C. Processing of intraspecific chemical signals in the rodent brain. Cell Tissue Res 383, 525–533 (2021). https://doi.org/10.1007/s00441-020-03383-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03383-7

Keywords

Navigation