Skip to main content

Advertisement

Log in

Bariatric Surgery and Osteoporosis

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

It has been increasingly acknowledged that bariatric surgery adversely affects skeletal health. After bariatric surgery, the extent of high-turnover bone loss is much greater than what would be expected in the absence of a severe skeletal insult. Patients also experience a significant deterioration in bone microarchitecture and strength. There is now a growing body of evidence that suggests an association between bariatric surgery and higher fracture risk. Although the mechanisms underlying the high-turnover bone loss and increase in fracture risk after bariatric surgery are not fully understood, many factors seem to be involved. The usual suspects are nutritional factors and mechanical unloading, and the roles of gut hormones, adipokines, and bone marrow adiposity should be investigated further. Roux-en-Y gastric bypass (RYGB) was once the most commonly performed bariatric procedure worldwide, but sleeve gastrectomy (SG) has now become the predominant bariatric procedure. Accumulating evidence suggests that RYGB is associated with a greater reduction in BMD, a greater increase in markers of bone turnover, and a higher risk of fracture than SG. These findings should be taken into consideration in determining the most appropriate bariatric procedure for patients, especially those at higher fracture risk. Before and after all bariatric procedures, sufficient calcium, vitamin D and protein intake, and adequate physical activity, are needed to counteract negative impacts on bone. There are no studies to date that have evaluated the effect of osteoporosis treatment on high-turnover bone loss after bariatric surgery. However, in patients with a diagnosis of osteoporosis, anti-resorptive agents may be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chang S-H, Stoll CRT, Song J, Varela JE, Eagon CJ, Colditz GA (2014) The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003–2012. JAMA Surg 149:275–287

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gagnon C, Schafer AL (2018) Bone health after bariatric surgery. JBMR Plus 2:121–133

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yu EW (2014) Bone metabolism after bariatric surgery. J Bone Miner Res 29:1507–1518

    Article  PubMed  Google Scholar 

  4. Thereaux J, Lesuffleur T, Païta M et al (2017) Long-term follow-up after bariatric surgery in a national cohort: long-term follow-up after bariatric surgery. Br J Surg 104:1362–1371

    Article  CAS  PubMed  Google Scholar 

  5. Lassailly G, Caiazzo R, Ntandja-Wandji L-C et al (2020) Bariatric surgery provides long-term resolution of nonalcoholic steatohepatitis and regression of fibrosis. Gastroenterology. https://doi.org/10.1053/j.gastro.2020.06.006

    Article  PubMed  Google Scholar 

  6. Robert M, Espalieu P, Pelascini E et al (2019) Efficacy and safety of one anastomosis gastric bypass versus Roux-en-Y gastric bypass for obesity (YOMEGA): a multicentre, randomised, open-label, non-inferiority trial. Lancet 393:1299–1309

    Article  PubMed  Google Scholar 

  7. Caiazzo R, Baud G, Clément G et al (2018) Impact of centralized management of bariatric surgery complications on 90-day mortality. Ann Surg 268:831–837

    Article  PubMed  Google Scholar 

  8. Sánchez-Pernaute A, Rubio MÁ, Pérez Aguirre E, Barabash A, Cabrerizo L, Torres A (2013) Single-anastomosis duodeno-ileal bypass with sleeve gastrectomy: metabolic improvement and weight loss in first 100 patients. Surg Obes Relat Dis 9:731–735

    Article  PubMed  Google Scholar 

  9. Santoro S, Castro LC, Velhote MCP et al (2012) Sleeve gastrectomy with transit bipartition: a potent intervention for metabolic syndrome and obesity. Ann Surg 256:104–110

    Article  PubMed  Google Scholar 

  10. Homan J, Betzel B, Aarts EO, van Laarhoven KJHM, Janssen IMC, Berends FJ (2015) Secondary surgery after sleeve gastrectomy: Roux-en-Y gastric bypass or biliopancreatic diversion with duodenal switch. Surg Obes Relat Dis 11:771–777

    Article  PubMed  Google Scholar 

  11. Lazzati A, Jung C, Béchet S (2019) Chirurgie de révision après sleeve gastrectomy: enquête nationale sur données administratives sur 230.000 patients. Obésité 14:24–26

    Google Scholar 

  12. Marceau P, Biron S, Marceau S et al (2014) Biliopancreatic diversion-duodenal switch: independent contributions of sleeve resection and duodenal exclusion. Obes Surg 24:1843–1849

    Article  PubMed  Google Scholar 

  13. Topart P, Becouarn G, Ritz P (2010) Should biliopancreatic diversion with duodenal switch be done as single-stage procedure in patients with BMI ≥50 kg/m2? Surg Obes Relat Dis 6:59–63

    Article  PubMed  Google Scholar 

  14. Skogar ML, Sundbom M (2017) Duodenal switch is superior to gastric bypass in patients with super obesity when evaluated with the bariatric analysis and reporting outcome system (BAROS). Obes Surg 27:2308–2316

    Article  PubMed  PubMed Central  Google Scholar 

  15. Biertho L, Simon-Hould F, Marceau S, Lebel S, Lescelleur O, Biron S (2016) Current outcomes of laparoscopic duodenal switch. Ann Surg Innov Res 10:1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Marceau P, Biron S, Marceau S et al (2015) Long-term metabolic outcomes 5 to 20 years after biliopancreatic diversion. Obes Surg 25:1584–1593

    Article  PubMed  Google Scholar 

  17. Lespessailles E, Paccou J, Javier RM et al (2019) Obesity, bariatric surgery and fractures. J Clin Endocrinol Metab 104:4756–4768

    Article  PubMed  Google Scholar 

  18. Nielson CM, Srikanth P, Orwoll ES (2012) Obesity and fracture in men and women: an epidemiologic perspective. J Bone Miner Res 27:1–10

    Article  PubMed  Google Scholar 

  19. Ishii S, Cauley JA, Greendale GA et al (2014) Pleiotropic effects of obesity on fracture risk: the study of women’s health across the nation: pleiotropic effects of obesity on fracture risk. J Bone Miner Res 29:2561–2570

    Article  PubMed  Google Scholar 

  20. Rousseau C, Jean S, Gamache P et al (2016) Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study. BMJ. https://doi.org/10.1136/bmj.i3794

    Article  PubMed  PubMed Central  Google Scholar 

  21. Khalid SI, Omotosho PA, Spagnoli A, Torquati A (2020) Association of bariatric surgery with risk of fracture in patients with severe obesity. JAMA Netw Open 3:e207419

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lalmohamed A, de Vries F, Bazelier MT et al (2012) Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. BMJ 345:e5085–e5085

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maghrabi AH, Wolski K, Abood B et al (2015) Two-year outcomes on bone density and fracture incidence in patients with T2DM randomized to bariatric surgery versus intensive medical therapy: bone density in diabetes after bariatric surgery. Obesity 23:2344–2348

    Article  PubMed  Google Scholar 

  24. Douglas IJ, Bhaskaran K, Batterham RL, Smeeth L (2015) Bariatric surgery in the United Kingdom: a cohort study of weight loss and clinical outcomes in routine clinical care. PLOS Med 12:e1001925

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nakamura KM, Haglind EGC, Clowes JA et al (2014) Fracture risk following bariatric surgery: a population-based study. Osteoporos Int 25:151–158

    Article  CAS  PubMed  Google Scholar 

  26. Yu EW, Lee MP, Landon JE et al (2017) Fracture risk after bariatric surgery: Roux-en-Y gastric bypass versus adjustable gastric banding: fracture risk after bariatric surgery. J Bone Miner Res 32:1229–1236

    Article  PubMed  Google Scholar 

  27. Yu EW, Kim SC, Sturgeon DJ et al (2019) Fracture risk after Roux-en-Y gastric bypass vs adjustable gastric banding among medicare beneficiaries. JAMA Surg 154:746

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lu CW, Chang YK, Chang HH et al (2015) Fracture risk after bariatric surgery: a 12-year nationwide cohort study. Medicine (Baltimore) 94:e2087

    Article  Google Scholar 

  29. Ahlin S, Peltonen M, Sjöholm K et al (2020) Fracture risk after three bariatric surgery procedures in Swedish obese subjects: up to 26 years follow-up of a controlled intervention study. J Intern Med 287:546–557

    Article  CAS  PubMed  Google Scholar 

  30. Paccou J, Martignène N, Lespessailles E et al (2020) Gastric bypass but not sleeve gastrectomy increases risk of major osteoporotic fracture: french population-based cohort study. J Bone Miner Res 35:1415–1423

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Q, Chen Y, Li J et al (2018) A meta-analysis of the effects of bariatric surgery on fracture risk. Obes Rev 19:728–736

    Article  CAS  PubMed  Google Scholar 

  32. Ablett AD, Boyle BR, Avenell A (2019) Fractures in adults after weight loss from bariatric surgery and weight management programs for obesity: systematic review and meta-analysis. Obes Surg 29:1327–1342

    Article  PubMed  Google Scholar 

  33. Axelsson KF, Werling M, Eliasson B et al (2018) Fracture risk after gastric bypass surgery: a retrospective cohort study. J Bone Miner Res 33:2122–2131

    Article  PubMed  Google Scholar 

  34. Javanainen M, Penttilä A, Mustonen H et al (2018) A retrospective 2-year follow-up of late complications treated surgically and endoscopically after laparoscopic Roux-en-Y gastric bypass (LRYGB) and laparoscopic sleeve gastrectomy (LSG) for morbid obesity. Obes Surg 28:1055–1062

    Article  PubMed  Google Scholar 

  35. Fashandi AZ, Mehaffey JH, Hawkins RB et al (2018) Bariatric surgery increases risk of bone fracture. Surg Endosc 32:2650–2655

    Article  PubMed  Google Scholar 

  36. Hofsø D, Nordstrand N, Johnson LK et al (2010) Obesity-related cardiovascular risk factors after weight loss: a clinical trial comparing gastric bypass surgery and intensive lifestyle intervention. Eur J Endocrinol 163:735–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Courcoulas AP, Goodpaster BH, Eagleton JK et al (2014) Surgical vs medical treatments for type 2 diabetes mellitus: a randomized clinical trial. JAMA Surg 149:707

    Article  PubMed  PubMed Central  Google Scholar 

  38. Scibora LM (2014) Skeletal effects of bariatric surgery: examining bone loss, potential mechanisms and clinical relevance. Diabetes Obes Metab 16:1204–1213

    Article  CAS  PubMed  Google Scholar 

  39. Ko BJ, Myung SK, Cho KH et al (2016) Relationship between bariatric surgery and bone mineral density: a meta-analysis. Obes Surg 26:1414–1421

    Article  PubMed  Google Scholar 

  40. Schafer AL, Kazakia GJ, Vittinghoff E et al (2018) Effects of gastric bypass surgery on bone mass and microarchitecture occur early and particularly impact postmenopausal women: bone mass and microarchitecture after gastric bypass surgery. J Bone Miner Res 33:975–986

    Article  PubMed  Google Scholar 

  41. Yu EW, Bouxsein ML, Putman MS et al (2015) Two-year changes in bone density after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab 100:1452–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bredella MA, Greenblatt LB, Eajazi A, Torriani M, Yu EW (2017) Effects of Roux-en-Y gastric bypass and sleeve gastrectomy on bone mineral density and marrow adipose tissue. Bone 95:85–90

    Article  PubMed  Google Scholar 

  43. Shanbhogue VV, Støving RK, Frederiksen KH et al (2017) Bone structural changes after gastric bypass surgery evaluated by HR-pQCT: a two-year longitudinal study. Eur J Endocrinol 176:685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lindeman KG, Greenblatt LB, Rourke C et al (2018) Longitudinal 5-year evaluation of bone density and microarchitecture after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab 103:4104–4112

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jaruvongvanich V, Vantanasiri K, Upala S, Ungprasert P (2019) Changes in bone mineral density and bone metabolism after sleeve gastrectomy: a systematic review and meta-analysis. Surg Obes Relat Dis 15:1252–1260

    Article  PubMed  Google Scholar 

  46. Liu C, Wu D, Zhang JF et al (2016) Changes in bone metabolism in morbidly obese patients after bariatric surgery: a meta-analysis. Obes Surg 26:91–97

    Article  PubMed  Google Scholar 

  47. Ivaska KK, Huovinen V, Soinio M et al (2017) Changes in bone metabolism after bariatric surgery by gastric bypass or sleeve gastrectomy. Bone 95:47–54

    Article  CAS  PubMed  Google Scholar 

  48. Stein EM, Silverberg SJ (2014) Bone loss after bariatric surgery: causes, consequences, and management. Lancet Diabetes Endocrinol 2:165–174

    Article  PubMed  PubMed Central  Google Scholar 

  49. Muschitz C, Kocijan R, Marterer C et al (2015) Sclerostin levels and changes in bone metabolism after bariatric surgery. J Clin Endocrinol Metab 100:891–901

    Article  CAS  PubMed  Google Scholar 

  50. Schafer AL, Weaver CM, Black DM et al (2015) Intestinal calcium absorption decreases dramatically after gastric bypass surgery despite optimization of vitamin D status. J Bone Miner Res 30:1377–1385

    Article  CAS  PubMed  Google Scholar 

  51. Riedt CS, Brolin RE, Sherrell RM, Field MP, Shapses SA (2006) True fractional calcium absorption is decreased after Roux-en-Y gastric bypass surgery. Obesity (Silver Spring) 14:1940–1948

    Article  CAS  Google Scholar 

  52. Wei JH, Lee WJ, Chong K et al (2018) High incidence of secondary hyperparathyroidism in bariatric patients: comparing different procedures. Obes Surg 28:798–804

    Article  PubMed  Google Scholar 

  53. Tardio V, Blais JP, Julien AS et al (2018) Serum parathyroid hormone and 25-hydroxyvitamin d concentrations before and after biliopancreatic diversion. Obes Surg 28:1886–1894

    Article  PubMed  Google Scholar 

  54. Bavaresco M, Paganini S, Lima TP et al (2010) Nutritional course of patients submitted to bariatric surgery. Obes Surg 20:716–721

    Article  PubMed  Google Scholar 

  55. Chou JJ, Lee WJ, Almalki O, Chen JC, Tsai PL, Yang SH (2017) Dietary intake and weight changes 5 years after laparoscopic sleeve gastrectomy. Obes Surg 27:3240–3246

    Article  PubMed  Google Scholar 

  56. Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM (1990) Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5:843–850

    Article  CAS  PubMed  Google Scholar 

  57. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19:1006–1012

    Article  PubMed  Google Scholar 

  58. Robling AG, Bellido T, Turner CH (2006) Mechanical stimulation in vivo reduces osteocyte expression of sclerostin. J Musculoskelet Neuronal Interact 6:354

    CAS  PubMed  Google Scholar 

  59. Stein EM, Carrelli A, Young P et al (2013) Bariatric surgery results in cortical bone loss. J Clin Endocrinol Metab 98:541–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Crawford MR, Pham N, Khan L, Bena JF, Schauer PR, Kashyap SR (2018) increased bone turnover in type 2 diabetes patients randomized to bariatric surgery verus medical therapy at 5 years. Endocr Pract 24:256–264

    Article  PubMed  Google Scholar 

  61. Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR (1985) Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89:1070–1077

    Article  CAS  PubMed  Google Scholar 

  62. le Roux CW, Batterham RL, Aylwin SJ et al (2006) Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 147:3–8

    Article  CAS  PubMed  Google Scholar 

  63. Wong IP, Driessler F, Khor EC et al (2012) Peptide YY regulates bone remodeling in mice: a link between gut and skeletal biology. PLoS ONE 7:e40038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wortley KE, Garcia K, Okamoto H et al (2007) Peptide YY regulates bone turnover in rodents. Gastroenterology 133:1534–1543

    Article  CAS  PubMed  Google Scholar 

  65. Dirksen C, Jørgensen NB, Bojsen-Møller KN et al (2012) Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia 55:1890–1901

    Article  CAS  PubMed  Google Scholar 

  66. Yu EW, Wewalka M, Ding SA et al (2016) Effects of gastric bypass and gastric banding on bone remodeling in obese patients with type 2 diabetes. J Clin Endocrinol Metab 101:714–722

    Article  CAS  PubMed  Google Scholar 

  67. Kim TY, Shoback DM, Black DM et al (2020) Increases in PYY and uncoupling of bone turnover are associated with loss of bone mass after gastric bypass surgery. Bone 131:115115

    Article  CAS  PubMed  Google Scholar 

  68. Fukushima N, Hanada R, Teranishi H et al (2005) Ghrelin directly regulates bone formation. J Bone Miner Res 20:790–798

    Article  CAS  PubMed  Google Scholar 

  69. Maccarinelli G, Sibilia V, Torsello A et al (2005) Ghrelin regulates proliferation and differentiation of osteoblastic cells. J Endocrinol 184:249–256

    Article  CAS  PubMed  Google Scholar 

  70. van der Velde M, van der Eerden BC, Sun Y et al (2012) An age-dependent interaction with leptin unmasks ghrelin’s bone-protective effects. Endocrinology 153:3593–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cummings DE, Weigle DS, Frayo RS et al (2002) Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 346:1623–1630

    Article  PubMed  Google Scholar 

  72. Carrasco F, Basfi-Fer K, Rojas P et al (2014) Changes in bone mineral density after sleeve gastrectomy or gastric bypass: relationships with variations in vitamin D, ghrelin, and adiponectin levels. Obes Surg 24:877–884

    Article  PubMed  Google Scholar 

  73. Tsukiyama K, Yamada Y, Miyawaki K et al (2004) Gastric inhibitory polypeptide is the major insulinotropic factor in K(ATP) null mice. Eur J Endocrinol 151:407–412

    Article  CAS  PubMed  Google Scholar 

  74. Zhong Q, Itokawa T, Sridhar S et al (2007) Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab 292:E543–E548

    Article  CAS  PubMed  Google Scholar 

  75. Rao RS, Kini S (2011) GIP and bariatric surgery. Obes Surg 21:244–252

    Article  PubMed  Google Scholar 

  76. Gutniak M, Orskov C, Holst JJ, Ahrén B, Efendic S (1992) Antidiabetogenic effect of glucagon-like peptide-1 (7–36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med 326:1316–1322

    Article  CAS  PubMed  Google Scholar 

  77. Farilla L, Bulotta A, Hirshberg B et al (2003) Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 144:5149–5158

    Article  CAS  PubMed  Google Scholar 

  78. Nuche-Berenguer B, Portal-Núñez S, Moreno P et al (2010) Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMP- linked GLP-1 receptor. J Cell Physiol 225:585–592

    Article  CAS  PubMed  Google Scholar 

  79. Nuche-Berenguer B, Moreno P, Esbrit P et al (2009) Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif Tissue Int 84:453–461

    Article  CAS  PubMed  Google Scholar 

  80. Diamantis T, Apostolou KG, Alexandrou A, Griniatsos J, Felekouras E, Tsigris C (2014) Review of long-term weight loss results after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis 10:177–183

    Article  PubMed  Google Scholar 

  81. Meek CL, Lewis HB, Reimann F, Gribble FM, Park AJ (2016) The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides 77:28–37

    Article  CAS  PubMed  Google Scholar 

  82. McCarty TR, Jirapinyo P, Thompson CC (2020) Effect of sleeve gastrectomy on ghrelin, GLP-1, PYY, and GIP gut hormones: a systematic review and meta-analysis. Ann Surg 272:72–80

    Article  PubMed  Google Scholar 

  83. Guney E, Kisakol G, Ozgen G, Yilmaz C, Yilmaz R, Kabalak T (2003) Effect of weight loss on bone metabolism: comparison of vertical banded gastroplasty and medical intervention. Obes Surg 13:383–388

    Article  PubMed  Google Scholar 

  84. Hammoud AO, Gibson M, Peterson CM, Meikle AW, Carrell DT (2008) Impact of male obesity on infertility: a critical review of the current literature. Fertil Steril 90:897–904

    Article  PubMed  Google Scholar 

  85. Hammoud A, Gibson M, Hunt SC et al (2009) Effect of Roux-en-Y gastric bypass surgery on the sex steroids and quality of life in obese men. J Clin Endocrinol Metab 94:1329–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Thomas DM, Udagawa N, Hards DK et al (1998) Insulin receptor expression in primary and cultured osteoclast-like cells. Bone 23:181–186

    Article  CAS  PubMed  Google Scholar 

  87. Reid IR (2008) Relationships between fat and bone. Osteoporos Int 19:595–606

    Article  CAS  PubMed  Google Scholar 

  88. Ducy P, Amling M, Takeda S et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207

    Article  CAS  PubMed  Google Scholar 

  89. Biver E, Salliot C, Combescure C et al (2011) Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab 96:2703–2713

    Article  CAS  PubMed  Google Scholar 

  90. Oshima K, Nampei A, Matsuda M et al (2005) Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 331:520–526

    Article  CAS  PubMed  Google Scholar 

  91. Carrasco F, Ruz M, Rojas P et al (2009) Changes in bone mineral density, body composition and adiponectin levels in morbidly obese patients after bariatric surgery. Obes Surg 19:41–46

    Article  PubMed  Google Scholar 

  92. Bruno C, Fulford AD, Potts JR et al (2010) Serum markers of bone turnover are increased at six and 18 months after Roux-en-Y bariatric surgery: correlation with the reduction in leptin. J Clin Endocrinol Metab 95:159–166

    Article  CAS  PubMed  Google Scholar 

  93. Schwartz AV, Sigurdsson S, Hue TF et al (2013) Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab 98:2294–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Paccou J, Penel G, Chauveau C, Cortet B, Hardouin P (2019) Marrow adiposity and bone: review of clinical implications. Bone 118:8–15

    Article  PubMed  Google Scholar 

  95. Fazeli PK, Bredella MA, Freedman L et al (2012) Marrow fat and preadipocyte factor-1 levels decrease with recovery in women with anorexia nervosa. J Bone Miner Res 27:1864–1871

    Article  CAS  PubMed  Google Scholar 

  96. Kim TY, Schwartz AV, Li X et al (2017) Bone marrow fat changes after gastric bypass surgery are associated with loss of bone mass. J Bone Miner Res 32:2239–2247

    Article  CAS  PubMed  Google Scholar 

  97. Blom-Høgestøl IK, Mala T, Kristinsson JA et al (2019) Changes in bone marrow adipose tissue one year after Roux-en-Y gastric bypass: a prospective cohort study. J Bone Miner Res 34:1815–1823

    Article  CAS  PubMed  Google Scholar 

  98. Li Z, Hardij J, Evers SS et al (2019) G-CSF partially mediates effects of sleeve gastrectomy on the bone marrow niche. J Clin Invest 129:2404–2416

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kim J, Brethauer S, ASMBS Clinical Issues Committee, American Society for Metabolic and Bariatric Surgery Clinical Issues Committee, Position Statement (2015) Metabolic bone changes after bariatric surgery. Surg Obes Relat Dis 11:406–411

    Article  PubMed  Google Scholar 

  100. Muschitz C, Kocijan R, Haschka J et al (2016) The impact of vitamin D, calcium, protein supplementation, and physical exercise on bone metabolism after bariatric surgery: the BABS study. J Bone Miner Res 31:672–682

    Article  CAS  PubMed  Google Scholar 

  101. Murai IH, Roschel H, Dantas WS et al (2019) Exercise mitigates bone loss in women with severe obesity after Roux-en-Y gastric bypass: a randomized controlled trial. J Clin Endocrinol Metab 104:4639–4650

    Article  PubMed  Google Scholar 

Download references

Funding

The authors are employed by their University and/or their hospital. These funding organizations did not suggest the subject of this study and did not have access to the results before publication. This study received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Paccou.

Ethics declarations

Conflict of interest

Julien Paccou, Eric Lespessailles, Robert Caiazzo, and Bernard Cortet declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paccou, J., Caiazzo, R., Lespessailles, E. et al. Bariatric Surgery and Osteoporosis. Calcif Tissue Int 110, 576–591 (2022). https://doi.org/10.1007/s00223-020-00798-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-020-00798-w

Keywords

Navigation