Skip to main content

Advertisement

Log in

Reusable alkaline catalyzed organosolv pretreatment and delignification of bagasse for sugar platform biorefinery

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

An alternative sodium methoxide (CH3ONa) in methanol medium was investigated for the pretreatment of bagasse. The use of CH3ONa as an alkaline promoter resulted in relatively high delignification efficiency and solid glucan recovery. The modified pretreatment process helps improve the enzymatic hydrolysis for sugar production. The effect of the reaction condition was evaluated by response surface methodology (RSM) to determine the maximized glucose yield. The optimal condition was performed at 150 °C for 63.9 min in the presence of CH3ONa promoter of 5.1% w/v, leading to the delignification of 86.5% and the maximized glucose yield of 83.9%. The reusability suggests that the recovery of the solvent mixture without the purification process showed efficiency in consecutive batch processing with five cycles. Structural characteristic analysis (i.e., SEM and XRD) of pretreated bagasse demonstrated significant removal of lignin fraction, resulting in increased cellulose digestibility in enzymatic hydrolysis for sugar platform biorefinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Watts N et al (2019) The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. Lancet 394(10211):1836–1878. https://doi.org/10.1016/S0140-6736(19)32596-6

    Article  Google Scholar 

  2. Zoghlami A, Paës G (2019) Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front Chem 7:874. https://doi.org/10.3389/fchem.2019.00874

    Article  Google Scholar 

  3. Cheah WY, Sankaran R, Show PL, Ibrahim TNBT, Chew KW, Culaba A, Chang JS (2020) Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Res J 7(1):1115–1127. https://doi.org/10.18331/BRJ2020.7.1.4

    Article  Google Scholar 

  4. Ghaderi M, Mousavi M, Yousefi H, Labbafi M (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr Polym 104:59–65. https://doi.org/10.1016/j.carbpol.2014.01.013

    Article  Google Scholar 

  5. Hernández-Pérez AF, Costa IAL, Silva DDV, Dussán KJ, Villela TR, Canettieri EV, Carvalho JA Jr, Soares Neto TG, Felipe MGA (2016) Biochemical conversion of sugarcane straw hemicellulosic hydrolysate supplemented with co-substrates for xylitol production. Bioresour Technol 200:1085–1088. https://doi.org/10.1016/j.biortech.2015.11.036

    Article  Google Scholar 

  6. Suriyachai N, Weerasaia K, Laosiripojana N, Champreda V, Unrean P (2013) Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments. Bioresour Technol 142:171–178. https://doi.org/10.1016/j.biortech.2013.05.003

    Article  Google Scholar 

  7. Nosratpour MJ, Karimi K, Sadeghi M (2018) Improvement of ethanol and biogas production from sugarcane bagasse using sodium alkaline pretreatments. J Environ Manag 226:329–339. https://doi.org/10.1016/j.jenvman.2018.08.058

    Article  Google Scholar 

  8. Ramli NAS, Amin NAS (2018) Thermo-kinetic assessment of glucose decomposition to 5-hydroxymethyl furfural and levulinic acid over acidic functionalized ionic liquid. Chem Eng J 335:221–230. https://doi.org/10.1016/j.cej.2017.10.112

    Article  Google Scholar 

  9. de Beeck BO, Dusselier M, Geboers J, Holsbeek J, Morré E, Oswald S, Giebeler L, Sels BF (2015) Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy Environ Sci 8:230–240. https://doi.org/10.1039/c4ee01523a

    Article  Google Scholar 

  10. Laadila MA, Hegde K, Rouissi T, Brar SK, Galvez R, Sorelli L, Cheikh RB, Paiva M, Abokitse K (2017) Green synthesis of novel biocomposites from treated cellulosic fibers and recycled bio-plastic polylactic acid. J Clean Prod 164:575–586. https://doi.org/10.1016/j.jclepro.2017.06.235

    Article  Google Scholar 

  11. Yang S, Bai S, Wang Q (2018) Sustainable packaging biocomposites from polylactic acid and wheat straw: enhanced physical performance by solid state shear milling process. Compos Sci Technol 158:34–42. https://doi.org/10.1016/j.compscitech.2017.12.026

    Article  Google Scholar 

  12. Kumar CR, Anand N, Kloekhorst A, Cannilla C, Bonura G, Frusteri F, Barta K, Heeres HJ (2015) Solvent free depolymerization of Kraft lignin to alkyl-phenolics using supported NiMo and CoMo catalysts. Green Chem 17:4921–4930. https://doi.org/10.1039/c5gc01641j

    Article  Google Scholar 

  13. Wanmolee W, Laosiripojana N, Daorattanachai P, Moghaddam L, Rencoret J, del Río JC, Doherty WOS (2018) Catalytic conversion of organosolv lignins to phenolic monomers in different organic solvents and effect of operating conditions on yield with methyl isobutyl ketone. ACS Sustain Chem Eng 6:3010–3018. https://doi.org/10.1021/acssuschemeng.7b02721

    Article  Google Scholar 

  14. Jafari Y, Amiri H, Karimi K (2016) Acetone pretreatment for improvement of acetone, butanol, and ethanol production from sweet sorghum bagasse. Appl Energy 168:216–225. https://doi.org/10.1016/j.apenergy.2016.01.090

    Article  Google Scholar 

  15. Kamusoko R, Jingura RM, Parawira W, Sanyika WT (2019) Comparison of pretreatment methods that enhance biomethane production from crop residues - a systematic review. Biofuel Res J 24:1080–1089. https://doi.org/10.18331/BRJ2019.6.4.4

    Article  Google Scholar 

  16. Kumar B, Bhardwaj N, Agrawal K, Chaturvedi V, Verma P (2020) Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process Technol 199:106244. https://doi.org/10.1016/j.fuproc.2019.106244

    Article  Google Scholar 

  17. Agnihotri S, Johnsen IA, Bøe MS, Øyaas K, Moe S (2015) Ethanol organosolv pretreatment of softwood (Picea abies) and sugarcane bagasse for biofuel and biorefinery applications. Wood Sci Technol 49:881–896. https://doi.org/10.1007/s00226-015-0738-4

    Article  Google Scholar 

  18. Mou H, Wu S (2017) Comparison of hydrothermal, hydrotropic and organosolv pretreatment for improving the enzymatic digestibility of bamboo. Cellulose 24:85–94. https://doi.org/10.1007/s10570-016-1117-5

    Article  Google Scholar 

  19. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part II: fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels Bioprod Biorefin 6:561–579. https://doi.org/10.1002/bbb

    Article  Google Scholar 

  20. Ravindran R, Jaiswal AK (2016) A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102. https://doi.org/10.1016/j.biortech.2015.07.106

    Article  Google Scholar 

  21. Schulze P, Leschinsky M, Seidel-Morgenstern A, Lorenz H (2019) Continuous separation of lignin from organosolv pulping liquors: combined lignin particle formation and solvent recovery. Ind Eng Chem Res 58:3797–3810. https://doi.org/10.1021/acs.iecr.8b04736

    Article  Google Scholar 

  22. Viell J, Harwardt A, Seiler J, Marquardt W (2013) Is biomass fractionation by Organosolv-like processes economically viable? A conceptual design study. Bioresour Technol 150:89–97. https://doi.org/10.1016/j.biortech.2013.09.078

    Article  Google Scholar 

  23. Yuan W, Gong Z, Wang G, Zhou W, Liu Y, Wang X, Zhao M (2018) Alkaline organosolv pretreatment of corn stover for enhancing the enzymatic digestibility. Bioresour Technol 265:464–470. https://doi.org/10.1016/j.biortech.2018.06.038

    Article  Google Scholar 

  24. Zhang H, Zhang J, Xie J, Qin Y (2020) Effects of NaOH-catalyzed organosolv pretreatment and surfactant on the sugar production from sugarcane bagasse. Bioresour Technol 312:123601. https://doi.org/10.1016/j.biortech.2020.123601

    Article  Google Scholar 

  25. Gullichsen J, Fogelholm C-J (2000). Papermaking science and Technology: 6. Chemical Pulping. Finland: Tappi Press. ISBN 952–5216-06-3

  26. Sánchez BS, Benitez B, Querini CA, Mendow G (2015) Transesterification of sunflower oil with ethanol using sodium ethoxide as catalyst. Effect of the reaction conditions. Fuel Process Technol 131:29–35. https://doi.org/10.1016/j.fuproc.2014.10.043

    Article  Google Scholar 

  27. Huang Q, Yan Q, Fu J, Lv X, Xiong C, Lin J, Liu Z (2016) Comparative study of different alcoholate pretreatments for enhanced enzymatic hydrolysis of sugarcane bagasse. Bioresour Technol 211:464–471. https://doi.org/10.1016/j.biortech.2016.03.067

    Article  Google Scholar 

  28. Lv X, Lin J, Luo L, Zhang D, Lei S, Xiao W, Xu Y, Gong Y, Liu Z (2018) Enhanced enzymatic saccharification of sugarcane bagasse pretreated by sodium methoxide with glycerol. Bioresour Technol 249:226–233. https://doi.org/10.1016/j.biortech.2017.09.137

    Article  Google Scholar 

  29. Bhatt SM, Shilpa (2014) Lignocellulosic feedstock conversion, inhibitor detoxification and cellulosic hydrolysis – a review. Biofuels 5(6):633–649. https://doi.org/10.1080/17597269.2014.1003702

    Article  Google Scholar 

  30. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, and Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure (LAP). National Renewable Energy Laboratory NREL/TP-510-42618

  31. Jönsson L, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  Google Scholar 

  32. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48. https://doi.org/10.1016/j.biortech.2015.08.085

    Article  Google Scholar 

  33. Du X, Pérez-Boada M, Fernández C, Rencoret J, del Río JC, Jiménez-Barbero J, Li J, Gutiérrez A, Martínez AT (2014) Analysis of lignin–carbohydrate and lignin–lignin linkages after hydrolase treatment of xylan–lignin, glucomannan–lignin and glucan–lignin complexes from spruce wood. Planta 239:1079–1090. https://doi.org/10.1007/s00425-014-2037-y

    Article  Google Scholar 

  34. Tarasov D, Leitch M, Fatehi P (2018) Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnol Biofuels 11:269. https://doi.org/10.1186/s13068-018-1262-1

    Article  Google Scholar 

  35. Evstigneyev EI, Shevchenko SM (2019) Structure, chemical reactivity and solubility of lignin: a fresh look. Wood Sci Technol 53(1):7–47. https://doi.org/10.1007/s00226-018-1059-1

    Article  Google Scholar 

  36. Zhao X, Li S, Wu R, Liu D (2017) Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels Bioprod Biorefin 11:567–590. https://doi.org/10.1002/bbb

    Article  Google Scholar 

  37. Paixão SM, Ladeira SA, Silva TP, Arez BF, Roseiro JC, Martins MLL, Alves L (2016) Sugarcane bagasse delignification with potassium hydroxide for enhanced enzymatic hydrolysis. RSC Adv 6:1042–1052. https://doi.org/10.1039/c5ra14908h

    Article  Google Scholar 

  38. Zhang J, Xie J, Zhang H (2020) Sodium hydroxide catalytic ethanol pretreatment and surfactant on the enzymatic saccharification of sugarcane bagasse. Bioresour Technol In Press. https://doi.org/10.1016/j.biortech.2020.124171

  39. Wang Y, Guo X, Li K, Nan Y, Wang J, Zhang J, Dou S, Li L, Liu G, Yang M (2019) Comparison of a solvent mixture assisted dilute acid and alkali pretreatment in sugar production from hybrid Pennisetum. Ind Crop Prod 141:111806. https://doi.org/10.1016/j.indcrop.2019.111806

    Article  Google Scholar 

  40. Raita M, Denchokepraguy N, Champreda V, Laosiripojana N (2017) Effects of alkaline catalysts on acetone-based organosolv pretreatment of rice straw. 3 Biotech 7:340. https://doi.org/10.1007/s13205-017-0969-1

    Article  Google Scholar 

  41. Chen H, Zhao J, Hu T, Zhao X, Liu D (2015) A comparison of several organosolv pretreatments for improving the enzymatic hydrolysis of wheat straw: substrate digestibility, fermentability and structural features. Appl Energy 150:224–232. https://doi.org/10.1016/j.apenergy.2015.04.030

    Article  Google Scholar 

  42. Li M, Wang J, Yang Y, Xie G (2016) Alkali-based pretreatments distinctively extract lignin and pectin for enhancing biomass saccharification by altering cellulose features in sugar-rich Jerusalem artichoke stem. Bioresour Technol 208:31–41. https://doi.org/10.1016/j.biortech.2016.02.053

    Article  Google Scholar 

Download references

Funding

This project was financially supported by a research grant (RTA 6280003) from the Thailand Research Fund. Saksit Imman and Nopparat Suriyachai were supported by a Unit of Excellence (UOE63006) from the University of Phayao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nopparat Suriyachai.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weerasai, K., Laosiripojana, N., Imman, S. et al. Reusable alkaline catalyzed organosolv pretreatment and delignification of bagasse for sugar platform biorefinery. Biomass Conv. Bioref. 13, 1751–1761 (2023). https://doi.org/10.1007/s13399-020-01269-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01269-w

Keywords

Navigation