Skip to main content

Advertisement

Log in

Application of N2-fixing Paenibacillus triticisoli BJ-18 changes the compositions and functions of the bacterial, diazotrophic, and fungal microbiomes in the rhizosphere and root/shoot endosphere of wheat under field conditions

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

From 2015 to 2018, we continuously applied the diazotroph Paenibacillus triticisoli BJ-18 as an inoculant to soil cropped winter wheat under field condition. Based on 16S rRNA, nifH, ITS, and shotgun metagenome sequencing, we investigated the influences of diazotroph on the composition and function of the bacterial, diazotrophic, and fungal communities in the rhizosphere and root/shoot endosphere of wheat in 2018. P. triticisoli BJ-18 significantly increased soil total N, available P, organic matter, nitrogenase activity, and wheat yield. The diversities of the rhizospheric bacterial community were higher in the inoculation treatment than the non-inoculation treatment, while the relative abundances of rhizospheric fungal, endospheric bacterial, and diazotrophic communities were lower in the inoculation treatment. Paenibacillus became dominant in the rhizosphere and root, and also the relative abundance of indigenous diazotrophs was increased by inoculation. The microbial inoculation also significantly increased the relative abundances of indigenous plant growth-promoting microbes (Bacillus, Klebsiella, and Podospora) but decreased the relative abundances of indigenous pathogenic fungi (Alternaria). Notably, some nitrogenase gene abundances were significantly enriched by inoculation. These results demonstrated that P. triticisoli BJ-18, acting as a keystone species, can change (optimize) the composition and function of plant microbiome to promote plant growth and productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The DNA reads have been deposited at NCBI with SRA accession nos. SRP218978, SRP224781, SRP223722, and SRP223975.

References

  • Adams RI, Miletto M, Taylor JW, Bruns TD (2013) Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J 7:1262–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand R, Grayston S, Chanway C (2013) N2 fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa. Microb Ecol 66:369–374

    Article  CAS  PubMed  Google Scholar 

  • Andhare P, Babu S (2017) Compatibility of Azospirillum brasilense and Pseudomonas fluorescens in growth promotion of groundnut ( Arachis hypogea L.). An Acad Bras Cienc 89:1027–1040

    Article  CAS  Google Scholar 

  • Andrews M, Andrews ME (2017) Specificity in legume-rhizobia symbioses. Int J Mol Sci 18:4

    Article  CAS  Google Scholar 

  • Baker W, Thompson T (1992). Determination of total nitrogen in plant samples by Kjeldahl. Plant analysis reference procedures for the southern region of the United States Southern Cooperative Series Bulletin 368:13–16

  • Banerjee S, Schlaeppi K, Van der Heijden M (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker P (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Boddey R, Oliveira O, Urquiaga S, Reis V, Olivares F, Baldani V, Döbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209

    Article  CAS  Google Scholar 

  • Brusamarello-Santos LC, Gilard F, Brule L, Quillere I, Gourion B, Ratet P, de Souza EM, Lea PJ, Hirel B (2017) Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense. PLoS one 12:19

    Article  CAS  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Muench PC, Weiman A, Droege J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Carvalho T, Balsemao Pires E, Saraiva R, Ferreira P, Hemerly A (2014) Nitrogen signaling in plant interactions with associative and endophytic diazotrophic bacteria. J Exp Bot 65:5631–5642

    Article  CAS  PubMed  Google Scholar 

  • Cassán F, Coniglio A, López G, Molina R, Nievas S, de Carlan CLN, Donadio F, Torres D, Rosas S, Pedrosa FO, Emanuel d S, Martín DZ, Luz d B, Verónica M (2020) Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol Fertil Soils 56:461–479

    Article  Google Scholar 

  • Chaudhry V, Chauhan PS, Mishra A, Goel R, Asif MH, Mantri SS, Bag SK, Singh SK, Sawant SV, Nautiyal CS (2013) Insights from the draft genome of Paenibacillus lentimorbus NRRL B-30488, a promising plant growth promoting bacterium. J Biotechnol 168:737–738

    Article  CAS  PubMed  Google Scholar 

  • Couturier M, Tangthirasunun N, Ning X, Brun S, Gautier V, Bennati-Granier C, Silar P, Berrin J-G (2016) Plant biomass degrading ability of the coprophilic ascomycete fungus Podospora anserina. Biotechnol Adv 34:976–983

    Article  CAS  PubMed  Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695:1–9

    Google Scholar 

  • Devi KA, Pandey G, Rawat AKS, Sharma GD, Pandey P (2017) The endophytic symbiont-Pseudomonas aeruginosa stimulates the antioxidant activity and growth of Achyranthes aspera L. Front Microbiol 8:1897

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz-Uriarte R, Alvarez de Andrés S (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotox Environ Saf 156:225–246

    Article  CAS  Google Scholar 

  • Fibach-Paldi S, Burdman S, Okon Y (2012) Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett 326:99–108

    Article  CAS  PubMed  Google Scholar 

  • Friedman J (2006) Recent advances in predictive (machine) learning. J Classif 23:175–197

    Article  Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu L, Penton CR, Ruan Y, Shen Z, Xue C, Li R, Shen Q (2017) Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol Biochem 104:39–48

    Article  CAS  Google Scholar 

  • Gadhave KR, Devlin PF, Ebertz A, Ross A, Gange AC (2018) Soil inoculation with Bacillus spp. modifies root endophytic bacterial diversity, evenness, and community composition in a context-specific manner. Microb Ecol 76:741–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Germida JJ, Siciliano SD, de Freitas JR, Seib AM (1998) Diversity of root-associated bacteria associated with held-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401–963401

    Article  PubMed  PubMed Central  Google Scholar 

  • Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Factories 15:203

    Article  Google Scholar 

  • Guyonnet JP, Vautrin F, Meiffren G, Labois C, Cantarel AAM, Michalet S, Comte G, Haichar FE (2017) The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites. FEMS Microbiol Ecol 93:11

    Article  CAS  Google Scholar 

  • Hajnal EJ, Orcic D, Torbica A, Kos J, Mastilovic J, Skrinjar M (2015) Alternaria toxins in wheat from the Autonomous Province of Vojvodina, Serbia: a preliminary survey. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment 32:361–370

    CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hedley MJ, Stewart JWB (1982) Method to measure microbial phosphate in soils. Soil Biol Biochem 14:377–385

    Article  CAS  Google Scholar 

  • Jean ME, Phalyvong K, Forest-Drolet J, Bellenger JP (2013) Molybdenum and phosphorus limitation of asymbiotic nitrogen fixation in forests of eastern Canada: influence of vegetative cover and seasonal variability. Soil Biol Biochem 67:140–146

    Article  CAS  Google Scholar 

  • Jiang CH, Xie P, Li K, Xie YS, Chen LJ, Wang JS, Xu Q, Guo JH (2018) Evaluation of root-knot nematode disease control and plant growth promotion potential of biofertilizer Ning shield on Trichosanthes kirilowii in the field. Braz J Microbiol 49:232–239

    Article  CAS  PubMed  Google Scholar 

  • Ke X, Feng S, Wang J, Lu W, Zhang W, Chen M, Lin M (2018) Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Syst Appl Microbiol 42:248–260

    Article  PubMed  CAS  Google Scholar 

  • Kempton RA, Taylor LR (1976) Models and statistics for species diversity. Nature 262:818–820

    Article  CAS  PubMed  Google Scholar 

  • Li DH, Liu CM, Luo RB, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676

    CAS  PubMed  Google Scholar 

  • Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li Y, Zhang H, Wang M, Chen S (2019) Diazotrophic Paenibacillus beijingensis BJ-18 provides nitrogen for plant and promotes plant growth, nitrogen uptake and metabolism. Front Microbiol 10:1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HW, Zhang L, Meng AH, Zhang JB, Xie MM, Qin YH, Faulk DC, Zhang BH, Yang SS, Qiu L (2017) Isolation and molecular identification of endophytic diazotrophs from seeds and stems of three cereal crops. PLoS One 12:e0187383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makela MR, Bouzid O, Robl D, Post H, Peng M, Heck A, Altelaar M, de Vries RP (2017) Cultivation of Podospora anserina on soybean hulls results in an efficient enzyme cocktail for plant biomass hydrolysis. New Biotechnol 37:162–171

    Article  CAS  Google Scholar 

  • Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35:453–461

    Article  CAS  Google Scholar 

  • Muoz-Rojas J, Caballero-Mellado J (2003) Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microb Ecol 46:454–464

    Article  Google Scholar 

  • Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA, Kouri ED, Paramasivan P, Ryu MH, Oldroyd GED, Poole PS, Udvardi MK, Voigt CA, Ané JM, Peters JW (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82:3698–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nannipieri P, Penton CR, Purahong W, Schloter M, van Elsas JD (2019) Recommendations for soil microbiome analyses. Biol Fert Soils 55:765–766

    Article  Google Scholar 

  • Newman MEJ (2006) Modularity and community structure in networks. P Natl Acad Sci USA 103:8577–8582

    Article  CAS  Google Scholar 

  • Perakis SS, Pett-Ridge JC, Catricala CE (2017) Nutrient feedbacks to soil heterotrophic nitrogen fixation in forests. Biogeochemistry 134:41–55

    Article  CAS  Google Scholar 

  • Petersen DG, Blazewicz SJ, Firestone M, Herman DJ, Turetsky M, Waldrop M (2012) Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ Microbiol 14:993–1008

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Richter-Heitmann T, Eickhorst T, Knauth S, Friedrich MW, Schmidt H (2016) Evaluation of strategies to separate root-associated microbial communities: a crucial choice in rhizobiome research. Front Microbiol 7:773

    Article  PubMed  PubMed Central  Google Scholar 

  • Roesch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microb 68:3818–3829

    Article  CAS  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe in 19:827–837

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJV, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Kulkarni J, Jha B (2016) Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front Microbiol 7:1600

    PubMed  PubMed Central  Google Scholar 

  • Shen Z, Ruan Y, Wang B, Zhong S, Su L, Li R, Shen Q (2015a) Effect of biofertilizer for suppressing Fusarium wilt disease of banana as well as enhancing microbial and chemical properties of soil under greenhouse trial. Appl Soil Ecol 93:111–119

    Article  Google Scholar 

  • Shen ZZ, Ruan YZ, Chao X, Zhang J, Li R, Shen QR (2015b) Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol Fertility Soils 51:553–562

    Article  CAS  Google Scholar 

  • Strickland TC, Sollins P (1987) Improved method for separating light- and heavy-fraction organic material from soil. Soil Sci Soc Am J 51:1390–1393

    Article  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int:863240

  • Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu HW, Anderson IC, Jeffries TC, Zhou JZ, Singh BK (2016) Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships. ISME J 10:2593–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vercelheze A, Marim B, Oliveira AL, Mali S (2019) Development of biodegradable coatings for maize seeds and their application for Azospirillum brasilense immobilization. Appl Microbiol Biotechnol 103:2193–2203

    Article  CAS  PubMed  Google Scholar 

  • Wang LY, Li J, Li QX, Chen SF (2014) Paenibacillus beijingensis sp. nov., a nitrogen-fixing species isolated from wheat rhizosphere soil. Anton Leeuw Int J G 105:437–437

    Article  Google Scholar 

  • Wang M, Xue J, Ma J, Feng X, Ying H, Xu H (2020) Streptomyces lydicus M01 regulates soil microbial community and alleviates foliar disease caused by alternaria alternata on cucumbers. Front Microbiol 11:1942

    Article  Google Scholar 

  • Wang Q, Xie Z, Li F (2015) Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale. Environ Pollut 206:227–235

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1989) Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. In: Innis GD, Sninsky J, White T (eds) Protocols and applications-a laboratory manual. Academic Press, New York, pp 315–322

    Google Scholar 

  • Xie J, Shi H, Du Z, Wang T, Liu X, Chen S (2016) Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species. Sci Rep 6:21329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong W, Guo S, Jousset A, Zhao QY, Wu HS, Li R, Kowalchuk GA, Shen QR (2017) Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome. Soil Biol Biochem 114:238–247

    Article  CAS  Google Scholar 

  • Xu WJ, Han XM, Li FQ, Zhang LS (2016) Natural occurrence of Alternaria toxins in the 2015 wheat from Anhui Province, China. Toxins 8:308

    Article  PubMed Central  CAS  Google Scholar 

  • Xue C, Hao Y, Pu X, Penton C, Wang Q, Zhao M, Zhang B, Ran W, Huang Q, Shen Q, Tiedje JM (2019) Effect of LSU and ITS genetic markers and reference databases on analyses of fungal communities. Biol Fert Soils 55:79–88

    Article  CAS  Google Scholar 

  • Yao AV, Bochow H, Karimov S, Boturov U, Sanginboy S, Sharipov AK (2006) Effect of FZB 24 Bacillus subtilis as a biofertilizer on cotton yields in field tests. Arch Phytopathol Plant Protect 39:323–328

    Article  Google Scholar 

  • Yousuf B, Sanadhya P, Keshri J, Jha B (2012) Comparative molecular analysis of chemolithoautotrophic bacterial diversity and community structure from coastal saline soils, Gujarat, India. BMC Microbiol 12:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusoff MZM, Hu AY, Feng CJ, Maeda T, Shirai Y, Hassan MA, Yu CP (2013) Influence of pretreated activated sludge for electricity generation in microbial fuel cell application. Bioresour Technol 145:90–96

    Article  PubMed  CAS  Google Scholar 

  • Zeffa D, Perini L, Silva M, Sousa N, Scapim C, Oliveira AL, Júnior A, Gonçalves L (2019) Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLoS One 14:e0215332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Johnston ER, Li L, Konstantinidis KT, Han X (2017) Experimental warming reveals positive feedbacks to climate change in the Eurasian Steppe. ISME J 11:885–895

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFD0200800).

Author information

Authors and Affiliations

Authors

Contributions

SFC designed the study and edited and reviewed the manuscript. YBL performed all experiments and wrote the original manuscript. MYW assayed wheat biomass.

Corresponding author

Correspondence to Sanfeng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Fig. S1

The rarefaction curves of rhizospheric bacteria (A), root endophytic bacteria (B), shoot endophytic bacteria (C), root endophytic diazotroph (D), shoot endophytic diazotroph (E) and rhizospheric fungi (F) based on OTUs level. (PDF 449 kb)

Table S1

Data statistics of shotgun metagenomic sequencing. (DOCX 15 kb)

Table S2

Microbial α-and β-diversity significances (P-values) between sample variables, and β-dissimilarities of intra- and inter-group comparisons. ANOSIM: analysis of similarities. (DOCX 17 kb)

Table S3

Good’s coverage of microbial communities in the wheat rhizosphere, roots and shoots. (DOCX 18 kb)

Table S4

Pearson’s correlation coefficient analysis between the abundances of nif genes and soil nitrogenase activity/total N content. (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, M. & Chen, S. Application of N2-fixing Paenibacillus triticisoli BJ-18 changes the compositions and functions of the bacterial, diazotrophic, and fungal microbiomes in the rhizosphere and root/shoot endosphere of wheat under field conditions. Biol Fertil Soils 57, 347–362 (2021). https://doi.org/10.1007/s00374-020-01528-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-020-01528-y

Keywords

Navigation