Skip to main content

Advertisement

Log in

Evaluation of Bioethanol Production from Sweet Sorghum Variety Roger under Different Tillage and Fertilizer Treatments

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Sweet sorghum Sorghum bicolor (L.) Moench) is a promising crop for bioethanol production characterized by its high biomass yield, sugar-rich stalks, facile juice extraction, and ability to adapt to different production systems. The objective of this study was to assess the effects of cultivation practices (soil treatments) on the juice, sugar, and ethanol yields of sweet sorghum variety Roger. Three methods of tillage (minimum, traditional, and traditional tillage with rupture of the plow layer) and three types of fertilizers (inorganic, organic, and without fertilizer) were assayed. The best results of stem yield (44.3 tons/ha), juice production (25.6 m3/ha), concentration of soluble solids in the juice (16.9 °Brix), and juice ethanol yield (2.1 m3/ha) were obtained under a mixture of traditional plowing with plow layer breaking, applying an organic fertilizer. In addition, the extracted juice allowed yeast (industrial Saccharomyces cerevisiae PE-2) growth and conversion to ethanol without the need for nutrients supplementation. Therefore, sweet sorghum continues to be an interesting bioenergetic crop for production of first-generation biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

BDW:

Bagasse dry weight

BFW:

Bagasse fresh weight

BMC:

Bagasse moisture content

EV:

Ethanol volume

EVP:

Ethanol volumetric productivity

FE:

Fermentation efficiency

FSY:

Fresh stem yield

JEC:

Juice ethanol concentrations

JEE:

Juice extraction efficiency

JEY:

Juice ethanol yield

JTEY:

Juice theoretical ethanol yield

JTW:

Juice total weight contained in the stem

JV:

Juice volume

JW:

Extracted juice weight

JY:

Juice yield

CSS:

Concentration of soluble solids in the juice

RS:

Reducing sugars

SFW:

Stem fresh weight

YBP:

Yeast biomass production

References

  1. Xuan TD, Phuong NT, Khang DT, Khanh TD (2015) Influence of sowing times, densities, and soils to biomass and ethanol yield of sweet sorghum. Sustainability 7:11657–11678. https://doi.org/10.3390/su70911657

    Article  CAS  Google Scholar 

  2. Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AAM, Rodrigues KF (2017) Yeasts in sustainable bioethanol production: A review. Biochem Biophys Rep 10:52–61. https://doi.org/10.1016/j.bbrep.2017.03.003

    Article  Google Scholar 

  3. Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energ Combust Sci 47:60–88. https://doi.org/10.1016/j.pecs.2014.10.003

    Article  Google Scholar 

  4. Zabed H, Faruq G, Sahu JN, Azirun MS, Hashim R, Nasrulhaq Boyce A (2014) Bioethanol production from fermentable sugar juice. Sci World J 957102. https://doi.org/10.1155/2014/957102

  5. Ruiz HA, Conrad M, Sun SN, Sanchez A, Rocha GJ, Romaní A, Castro E, Torre A, Rodríguez-Jasso RM, Andrade LP, Smirnova I, Run-Cang S, Meyer AS (2020) Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour Technol 299:122685. https://doi.org/10.1016/j.biortech.2019.122685

    Article  CAS  PubMed  Google Scholar 

  6. Carrillo-Nieves D, Alaní MJR, de la Cruz QR, Ruiz HA, Iqbal HM, Parra-Saldívar R (2019) Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renewable Sustainable Energy Rev 102:63–74. https://doi.org/10.1016/j.rser.2018.11.031

    Article  CAS  Google Scholar 

  7. The renewable fuels association (RFA) (2020). Ethanol industry outlook 2020. https://ethanolrfa.org/wp-content/uploads/2020/02/2020-Outlook-Finalfor-Website.pdf. Accessed 30 August 2020

  8. Ruiz HA, Martínez A, Vermerris W (2016) Bioenergy potential, energy crops, and biofuel production in Mexico. BioEnerg Res 9:981–984. https://doi.org/10.1007/s12155-016-9802-7

    Article  Google Scholar 

  9. Technological roadmap for bioethanol in Mexico (2018) https://www.gob.mx/cms/uploads/attachment/file/296710/MRT_BIOETANOL_02022018_06_Feb_18-RED2.pdf. .

  10. Cluster of Bioalcohols - Mexican Centre for Innovation in Bioenergy (CEMIE-BIO) (2018) https://cemiebioalcoholes.org/. Accessed 30 August 2020.

  11. Khalil SR, Abdelhafez AA, Amer EAM (2015) Evaluation of bioethanol production from juice and bagasse of some sweet sorghum varieties. Ann Agric Sci 60:317–324. https://doi.org/10.1016/j.aoas.2015.10.005

    Article  Google Scholar 

  12. Pabendon MB, Efendi R, Santoso SB, Prastowo B (2017) Varieties of sweet sorghum Super-1 and Super-2 and its equipment for bioethanol in Indonesia. IOP Conf Ser: Earth Environ Sci 65:012054 https://iopscience.iop.org/article/10.1088/1755-1315/65/1/012054

    Article  Google Scholar 

  13. Mar NN, Linn K, Wai HP, Mon H, Soe AA, Minn M (2019) Efficiency of different N, P, K fertilizer application methods in sorghum to optimize marginal land productivity. Science 4:511–515. https://www.irjaes.com/pdf/V4N2Y19-IRJAES/IRJAES-V4N2P663Y19.pdf

    Google Scholar 

  14. Regassa TH, Wortmann CS (2014) Sweet sorghum as a bioenergy crop: Literature review. Biomass Bioenerg 64:348–355. https://doi.org/10.1016/j.biombioe.2014.03.052

    Article  CAS  Google Scholar 

  15. Cole MR, Eggleston G, Petrie E, Uchimiya SM, Dalley C (2017) Cultivar and maturity effects on the quality attributes and ethanol potential of sweet sorghum. Biomass Bioenerg 96:183–192. https://doi.org/10.1016/j.biombioe.2016.12.001

    Article  CAS  Google Scholar 

  16. Maw MJ, Houx JH, Fritschi FB (2019) Nitrogen content and use efficiency of sweet sorghum grown in the lower midwest. Agron J 111:2920-2928. 10.0.8.86/agronj2018.08.0489

  17. Rao SS, Patil JV, Reddy DC, Kumar BV, Rao PS, Gadakh SR (2013) Effect of different crushing treatments on sweet sorghum juice extraction and sugar quality traits in different seasons. Sugar Tech 15:311–315. https://doi.org/10.1007/s12355-013-0220-2

    Article  Google Scholar 

  18. Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G (2017) Bioethanol production from renewable sources: Current perspectives and technological progress. Renew Sust Energ Rev 71:475–501. https://doi.org/10.1016/j.rser.2016.12.076

    Article  CAS  Google Scholar 

  19. Soares-Costa A, Nakayama DG, de Freitas L, Catelli LF, Bassi APG, Ceccato-Antonini SR, Henrique-Silva F (2014) Industrial PE-2 strain of Saccharomyces cerevisiae: from alcoholic fermentation to the production of recombinant proteins. New Biotechnol 31:90–97. https://doi.org/10.1016/j.nbt.2013.08.005

    Article  CAS  Google Scholar 

  20. Romaní A, Ruiz HA, Pereira FB, Teixeira JA, Domingues L (2014) Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel 135:482–491. https://doi.org/10.1016/j.fuel.2014.06.061

    Article  CAS  Google Scholar 

  21. Gonçalves FA, Ruiz HA, dos Santos ES, Teixeira JA, de Macedo GR (2016) Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renew. Energy 94:353–365. https://doi.org/10.1016/j.renene.2016.03.045

    Article  CAS  Google Scholar 

  22. Aguilar-Reynosa A, Romaní A, Rodríguez-Jasso RM, Aguilar CN, Garrote G, Ruiz HA (2017) Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. Bioresour Technol 243:273–283. https://doi.org/10.1016/j.biortech.2017.06.096

    Article  CAS  PubMed  Google Scholar 

  23. Aguilar DL, Rodríguez-Jasso RM, Zanuso E, de Rodríguez DJ, Amaya-Delgado L, Sanchez A, Ruiz HA (2018) Scale-up and evaluation of hydrothermal pretreatment in isothermal and non-isothermal regimen for bioethanol production using agave bagasse. Bioresour. Technolo 263:112–119. https://doi.org/10.1016/j.biortech.2018.04.100

    Article  CAS  Google Scholar 

  24. Wu R, Chen D, Cao S, Lu Z, Huang J, Lu Q, Chen Y, Chen X, Guan N, Wei Y, Huang R (2020) Enhanced ethanol production from sugarcane molasses by industrially engineered Saccharomyces cerevisiae via replacement of the PHO4 gene. RSC Adv 10:2267–2276. https://doi.org/10.1039/c9ra08673k

    Article  CAS  Google Scholar 

  25. Pereira FB, Romaní A, Ruiz HA, Teixeira JA, Domingues L (2014) Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Bioresour. Technol 161:192–199. https://doi.org/10.1016/j.biortech.2014.03.043

    Article  CAS  PubMed  Google Scholar 

  26. Maw MJ, Houx JH, Fritschi FB (2016) Sweet sorghum ethanol yield response to nitrogen fertilization. Ind Crop Prod 84:43–49. https://doi.org/10.1016/j.indcrop.2016.01.038

    Article  CAS  Google Scholar 

  27. Thivierge MN, Chantigny MH, Bélanger G, Seguin P, Bertrand A, Vanasse A (2015) Response to nitrogen of sweet pearl millet and sweet sorghum grown for ethanol in eastern Canada. Bioenergy Res 8:807–820. https://doi.org/10.1007/s12155-014-9558-x

    Article  CAS  Google Scholar 

  28. Kashapov NF, Nafikov MM, Gazetdinov MX, Nafikova MM, Nigmatzyanov AR (2016) Justification of the choice of units for mains-noah soil cultivation of sweet sorghum and their effectiveness. IOP Conf Ser: Mater Sci Eng 134:012013. https://doi.org/10.1088/1757-899X/134/1/012013

    Article  Google Scholar 

  29. Adimassu Z, Alemu G, Tamene L (2019) Effects of tillage and crop residue management on runoff, soil loss and crop yield in the Humid Highlands of Ethiopia. Agric Syst 168:11–18. https://doi.org/10.1016/j.agsy.2018.10.007

    Article  Google Scholar 

  30. Moraes ERD, Mageste JG, Lana RMQ, Torres JLR, Domingues LADS, Lemes EM, Lima LCD (2019) Sugarcane root development and yield under different soil tillage practices. Rev Bras Ciênc Solo 43:1–10. https://doi.org/10.1590/18069657rbcs20180090

    Article  CAS  Google Scholar 

  31. Tovignan TK, Fonceka D, Ndoye I, Cisse N, Luquet D (2016) The sowing date and post-flowering water status affect the sugar and grain production of photoperiodic, sweet sorghum through the regulation of sink size and leaf area dynamics. Field Crops Res 192:67–77. https://doi.org/10.1016/j.fcr.2016.04.015

    Article  Google Scholar 

  32. Rolz C, de León R, de Montenegro ALM, Porras V, Cifuentes R (2017) A multiple harvest cultivation strategy for ethanol production from sweet sorghum throughout the year in tropical ecosystems. Renew Energy 106:103–110. https://doi.org/10.1016/j.renene.2016.12.036

    Article  CAS  Google Scholar 

  33. Catálogo Nacional de Variedades Vegetales en línea (2014) Servicio Nacional de Inspección y Certificación de Semillas (SNICS). https://www.gob.mx/snics/articulos/catalogo-nacional-de-variedades-vegetales-en-linea?idiom=es. Accessed 10 August 2020

  34. López-Sandin I, Gutiérrez-Soto G, Gutiérrez-Díez A, Medina-Herrera N, Gutiérrez-Castorena E, Zavala-García F (2019) Evaluation of the use of energy in the production of sweet sorghum (Sorghum bicolor (L.) Moench) under different production systems. Energies 12:1713. https://doi.org/10.3390/en12091713

    Article  Google Scholar 

  35. Adewole KA, Adamolekun MT, Akinnusi R (2015) Development of a sugarcane juice extractor for small scale industries. Development 2:1169–1173 http://www.jmest.org/wp-content/uploads/JMESTN42350769.pdf

    Google Scholar 

  36. Olaoye JO (2011) Development of a sugarcane juice extractor for small scale industries. J Agric Technol 7:931–944 https://pdfs.semanticscholar.org/693c/258efcf0e21c97a400d19e1727e2de141717.pdf

    Google Scholar 

  37. Della-Bianca BE, de Hulster E, Pronk JT, van Maris AJA, Gombert AK (2014) Physiology of the fuel ethanol strain Saccharomyces cerevisiae PE-2 at low pH indicates a context-dependent performance relevant for industrial applications. FEMS Yeast Res 14:1196–1205. https://doi.org/10.1111/1567-1364.12217

    Article  CAS  PubMed  Google Scholar 

  38. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  39. Crowell EA, Ough CS (1979) A modified procedure for alcohol determination by dichromate oxidation. Am J Enol Viticult 30:61–63 https://www.ajevonline.org/content/30/1/61

    CAS  Google Scholar 

  40. Appiah-Nkansah NB, Zhang K, Rooney W, Wang D (2018) Ethanol production from mixtures of sweet sorghum juice and sorghum starch using very high gravity fermentation with urea supplementation. Ind Crop Prod 111:247–253. https://doi.org/10.1016/j.indcrop.2017.10.028

    Article  CAS  Google Scholar 

  41. Laopaiboon L, Thanonkeo P, Jaisil P, Laopaiboon P (2007) Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J Microbiol Biotechnol 23:1497–1501. https://doi.org/10.1007/s11274-007-9383-x

    Article  CAS  Google Scholar 

  42. Rono JK, Cheruiyot EK, Othira JO, Njuguna VW (2018) Cane yield and juice volume determine ethanol yield in sweet sorghum (Sorghum bicolor L. Moench). Int J Appl Sci 1:29–36. https://doi.org/10.30560/ijas.v1n2p29

    Article  Google Scholar 

  43. Yang X, Li M, Liu H, Ren L, Xie G (2018) Technical feasibility and comprehensive sustainability assessment of sweet sorghum for bioethanol production in China. Sustainability 10:731. https://doi.org/10.3390/su10030731

    Article  Google Scholar 

  44. Yoosukyingsataporn S, Detpiratmongkol S (2019) Effects of ethephon on growth and yield of sweet sorghum (Sorghum bicolor L. Moench) at different growth stages. Plant Physiol 10:2987–2887. https://doi.org/10.22034/ijpp.2019.670785

    Article  Google Scholar 

  45. Rajendran C, Ramamoorthy K, Backiyarani S (2000) Effect of deheading on juice quality characteristics and sugar yield of sweet sorghum. J Agron Crop Sci 185:23–26. https://doi.org/10.1046/j.1439-037X.2000.00386.x

    Article  Google Scholar 

  46. Gnansounou E, Dauriat A, Wyman CE (2005) Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour. Technol 96:985–1002. https://doi.org/10.1016/j.biortech.2004.09.015

    Article  CAS  PubMed  Google Scholar 

  47. Mekdad A, Emam S (2019) Biofuel, sugar content, grain yields and qualities of two Sorghum bicolor in responses to levels and timing of nitrogen applications. Egypt J Agron 41:105–117. https://doi.org/10.21608/agro.2019.10075.1152

    Article  Google Scholar 

  48. Shukla S, Felderhoff TJ, Saballos A, Vermerris W (2017) The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor (L.) Moench). Field Crop Res 203:181–191. https://doi.org/10.1016/j.fcr.2016.12.004

    Article  Google Scholar 

  49. Bandara AY, Weerasooriya DK, Gobena DD, Hopper DJ, Tesso TT, Little CR (2019) Improving sweet sorghum for enhanced juice traits and biomass. Plant Breeding 139:131–140. https://doi.org/10.1111/pbr.12764

    Article  CAS  Google Scholar 

  50. Bakhite MAE, Badawi GH, Odindo A, Magwaza LS (2019) Assessment of the effects of winter condition on sweet sorghum yield and sugar content. TURJAF 7:166–172. https://doi.org/10.24925/turjaf.v7i2.166-172.1888

    Article  Google Scholar 

  51. da Silva TM, de Oliveira AB, de Moura JG, da Trindade Lessa BF, de Oliveira LSB (2019) Potential of sweet sorghum juice as a source of ethanol for semi-arid regions: cultivars and spacing arrangement effects. Sugar Tech 21:145–152. https://doi.org/10.1007/s12355-018-0637-8

    Article  CAS  Google Scholar 

  52. Montes-García N, Uribe-Gómez S, Cisneros-López M, Pecina-Quintero V, Moreno-Gallegos T, Díaz-Franco A (2019) RB-PIRULÍ: variedad de sorgo dulce para la producción de biomasa y azúcares en México. Rev Fitotec Mex 42:75–77. http://www.scielo.org.mx/scielo.php?pid=S0187-73802019000100075&script=sci_arttext&tlng=en

    Google Scholar 

  53. Han KJ, Alison M (2020) Cover crop and tillage affect sweet sorghum production and soil chemical properties. Agron J 112:107–116. https://doi.org/10.3234/agj2.20038

  54. Zhai Z, Li YY, Zhang L, Pang B, Pang HC, Wei BH, Qi SW (2017) Effects of short-term deep vertically rotary tillage on topsoil structure of lime concretion black soil and wheat growth in Huang-Huai-Hai Plain, China. Chin J Appl Ecol 28:1211–1218. https://doi.org/10.13287/j.1001-9332.201704.016

    Article  Google Scholar 

  55. Varsa EC, Chong SK, Abolaji JO, Farquhar DA, Olsen FJ (1997) Effect of deep tillage on soil physical characteristics and corn (Zea mays L.) root growth and production. Soil Tillage Res 43:219–228. https://doi.org/10.1016/S0167-1987(97)00041-X

    Article  Google Scholar 

  56. Busscher WJ, Frederick JR, Bauer PJ (2000) Timing effects of deep tillage on penetration resistance and wheat and soybean yield. Soil Sci Soc Am J 64:999–1003. https://doi.org/10.2136/sssaj2000.643999x

    Article  CAS  Google Scholar 

  57. Botta GF, Jorajuria D, Balbuena R, Ressia M, Ferrero C, Rosatto H, Tourn M (2006) Deep tillage and traffic effects on subsoil compaction and sunflower (Helianthus annus L.) yields. Soil Tillage Res 91:164–172. https://doi.org/10.1016/j.still.2005.12.011

    Article  Google Scholar 

  58. Janeth C, Karuku GN, Onwonga RN, Kathumo VM (2019) Effects of tillage practices and organic cropping systems on the yield of sorghum (Sorghum bicolor L.) and sweet potato (Ipomoea batatas L) in Yatta Sub-County, Kenya. J Agric Sustain 12:232–249. https://www.infinitypress.info/index.php/jas/article/view/1806

    Google Scholar 

  59. Holou RA, Stevens G (2012) Juice, sugar, and bagasse response of sweet sorghum (Sorghum bicolor (L.) M oench cv. M81E) to N fertilization and soil type. GCB. Bioenergy 4:302–310. https://doi.org/10.1111/j.1757-1707.2011.01126.x

    Article  Google Scholar 

  60. Li J, Wen Y, Li X, Li Y, Yang X, Lin Z, Zhao B (2018) Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil Tillage Res 175:281–290. https://doi.org/10.1016/j.still.2017.08.008

    Article  Google Scholar 

  61. Ghosh A, Bhattacharyya R, Meena MC, Dwivedi BS, Singh G, Agnihotri R, Sharma C (2018) Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol. Soil Tillage Res 177:134–144. https://doi.org/10.1016/j.still.2017.12.006

    Article  Google Scholar 

  62. Karuku GN, Onwonga RN, Kathumo VM (2018) Effects of tillage practices, cropping systems and organic inputs on soil nutrient content in Machakos County. J Agric Sustain 13:2618–2630. https://doi.org/10.5897/AJAR2018.13444

    Article  CAS  Google Scholar 

  63. Ebrahimiaqda E, Ogden KL (2018) Evaluation and modeling of bioethanol yield efficiency from sweet sorghum juice. BioEnerg Res 11:449–455. https://doi.org/10.1007/s12155-018-9909-0

    Article  CAS  Google Scholar 

  64. Kumar CG, Rao PS, Gupta S, Malapaka J, Kamal A (2015) Chemical preservatives-based storage studies and ethanol production from juice of sweet sorghum cultivar, ICSV 93046. Sugar Tech 17:404–411. https://doi.org/10.1007/s12355-014-0336-z

    Article  CAS  Google Scholar 

  65. Wu X, Staggenborg S, Propheter JL, Rooney WL, Yu J, Wang D (2010) Features of sweet sorghum juice and their performance in ethanol fermentation. Ind Crop Prod 31:164–170. https://doi.org/10.1016/j.indcrop.2009.10.006

    Article  CAS  Google Scholar 

  66. Ratnavathi CV, Chakravarthy SK, Komala VV, Chavan UD, Patil JV (2011) Sweet sorghum as feedstock for biofuel production: a review. Sugar Tech 13:399–407. https://doi.org/10.1007/s12355-011-0112-2

    Article  CAS  Google Scholar 

  67. Bridgers EN, Chinn MS, Veal MW, Stikeleather LF (2011) Influence of juice preparations on the fermentability of sweet sorghum. Biol Eng Trans 4:57–67 https://elibrary.asabe.org/abstract.asp?aid=38507

    Article  CAS  Google Scholar 

  68. Buruiană CT, Vizireanu C, Furdui B (2018) Bioethanol production from sweet sorghum stalk juice by ethanol-tolerant Saccharomyces cerevisiae strains: An overview. The Annals of the University Dunarea de Jos of Galati. Fascicle VI-Food Technology 42:153–167 https://www.gup.ugal.ro/ugaljournals/index.php/food/article/view/1153

    Google Scholar 

  69. Pilap W, Thanonkeo S, Klanrit P, Thanonkeo P (2018) The potential of the newly isolated thermotolerant Kluyveromyces marxianus for high temperature ethanol production using sweet sorghum juice. 3 Biotech 8:126. https://doi.org/10.1007/s13205-018-1161-y

    Article  PubMed  PubMed Central  Google Scholar 

  70. Laopaiboon P, Khongsay N, Phukoetphim N, Laopaiboon L (2019) Ethanol production from sweet sorghum juice under very high gravity fermentation by Saccharomyces cerevisiae: aeration strategy and its effect on yeast intracellular composition. Chiang Mai J Sci 46:481–494 http://www.thaiscience.info/Journals/Article/CMJS/10990589.pdf

    CAS  Google Scholar 

  71. Phukoetphim N, Chan-u-tit P, Laopaiboon P, Laopaiboon L (2019) Improvement of bioethanol production from sweet sorghum juice under very high gravity fermentation: Effect of nitrogen, osmoprotectant, and aeration. Energies 12:3620. https://doi.org/10.3390/en12193620

    Article  CAS  Google Scholar 

  72. Akin H, Brandam C, Meyer XM, Strehaiano P (2008) A model for pH determination during alcoholic fermentation of a grape must by Saccharomyces cerevisiae. Chem Eng Process 47:1986–1993. https://doi.org/10.1016/j.cep.2007.11.014

    Article  CAS  Google Scholar 

  73. Lu Y, Voon MKW, Huang D, Lee PR, Liu SQ (2017) Combined effects of fermentation temperature and pH on kinetic changes of chemical constituents of durian wine fermented with Saccharomyces cerevisiae. Appl Microbiol Biot 101:3005–3014. https://doi.org/10.1007/s00253-016-8043-1

    Article  CAS  Google Scholar 

  74. Durán MA, Dantur K, Ruiz RM, Romero ER, Zossi S, Gusils C (2018) Effect of the clarification pH of sorghum juice on the composition of essential nutrients for fermentation. FEMS Microbiol Lett 365:fny083. https://doi.org/10.1093/femsle/fny083

    Article  CAS  Google Scholar 

  75. Guigou M, Lareo C, Pérez LV, Lluberas ME, Vázquez D, Ferrari MD (2011) Bioethanol production from sweet sorghum: Evaluation of post-harvest treatments on sugar extraction and fermentation. Biomass Bioenergy 35:3058–3062. https://doi.org/10.1016/j.biombioe.2011.04.028

    Article  CAS  Google Scholar 

  76. Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105. https://doi.org/10.1016/j.biotechadv.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  77. Sarungallo RS, Melawaty L, Djonny M, Bulo L, Mangera L, Pabendon MB, Sarungallo ZL (2020) Fermentation juice sweet sorghum genotip 4-183a using batch system by optimizing the concentration of inoculum and substrate. J Phys: Conf Ser 1464:012050. https://doi.org/10.1088/1742-6596/1464/1/012050/pdf

    Article  CAS  Google Scholar 

  78. Rolz C, de León R, de Montenegro ALM (2019) Co-production of ethanol and biodiesel from sweet sorghum juice in two consecutive fermentation steps. Electron J Biotechn 41:13–21. https://doi.org/10.1016/j.ejbt.2019.05.002

    Article  CAS  Google Scholar 

  79. Nghiem NP, Montanti J, Johnston DB (2016) Sorghum as a renewable feedstock for production of fuels and industrial chemicals. Bioengineering 3:75–91. https://doi.org/10.3934/bioeng.2016.1.75

    Article  CAS  Google Scholar 

  80. Ayodele BV, Alsaffar MA, Mustapa SI (2020) An overview of integration opportunities for sustainable bioethanol production from first-and second generation sugar-based feedstocks. J Clean Prod 245:18857. https://doi.org/10.1016/j.jclepro.2019.118

    Article  Google Scholar 

  81. Saïed N, Khelifi M, Bertrand A, Aider M, Tremblay GF (2020) Optimization of water-soluble carbohydrate extraction from sweet sorghum and sweet pearl millet biomass. BioEnergy Res 13:237–248. https://doi.org/10.1007/s12155-020-10107-w

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the Autonomous University of Nuevo León for the support of this research. Héctor A. Ruiz would like to thank the Secretary of Public Education of Mexico e Mexican Science and Technology Council (SEP-CONACYT) for the Basic Science Project 2015-01 (Ref. 254808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guadalupe Gutiérrez-Soto.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 15031 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Sandin, I., Zavala-García, F., Levin, L. et al. Evaluation of Bioethanol Production from Sweet Sorghum Variety Roger under Different Tillage and Fertilizer Treatments. Bioenerg. Res. 14, 1058–1069 (2021). https://doi.org/10.1007/s12155-020-10215-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10215-7

Keywords

Navigation