Skip to main content

Advertisement

Log in

Effect of Torrefaction Treatment on Physical and Fuel Properties of Caragana (Caragana korshinskii) Pellets

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Caragana is potentially an alternative biomass feedstock in China. The influences of different torrefaction conditions on the physical characteristics and fuel properties of pellets made from Caragana were investigated. The Caragana pellets were torrefied under the temperature of 225, 250, and 275 °C with the residence time of 10, 15, and 20 min, respectively. The results showed that the density of torrefied pellet reduced by 24.07 to 35.20%. Compression strength decreased to 7.62 N/mm2 for treated pellets under the condition of 275 °C and 20 min with the maximum weight loss of 29.93%, and the higher heating value increased to 20.95~22.93 MJ/kg. The equilibrium moisture content of the torrefied pellets decreased by 46.17% compared with raw materials. The mass yield and energy yield of torrefied pellet were 70.07 to 88.54% and 70.93 to 90.79%, respectively. With the increase of the torrefaction severity, the mechanical and physical properties of the pellets decreased, while the storage performance and fuel properties enhanced. Simultaneously, the torrefaction temperature had more influence on the fuel properties of Caragana pellets than the residence time. The Caragana pellets torrefied at 250 °C for 20 min maintained not only almost the same mechanical and physical properties as the untreated pellets but performed better storage and fuel properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Song C, Liu Q, Deng S, Li H, Kitamura Y (2019) Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges. Renew Sust Energ Rev 101:265–278. https://doi.org/10.1016/j.rser.2018.11.018

    Article  CAS  Google Scholar 

  2. Yao X, Zhou H, Zhao Z, Xu K (2020) Investigation on the dependence of concentration and transformation of inorganics in corncob gasification ashes upon particle size classification. Powder Technol 371:1–12. https://doi.org/10.1016/j.powtec.2020.05.083

    Article  CAS  Google Scholar 

  3. Yu Y, Wang G, Bai X, Liu J, Wang D, Wang Z (2018) Combined different dehydration pretreatments and torrefaction to upgrade fuel properties of hybrid pennisetum (Pennisetum americanum× P. purpureum). Bioresour Technol 263:541–547. https://doi.org/10.1016/j.biortech.2018.05.048

    Article  CAS  PubMed  Google Scholar 

  4. Brachi P, Chirone R, Miccio M, Ruoppolo G (2019) Fluidized bed torrefaction of biomass pellets: a comparison between oxidative and inert atmosphere. Powder Technol 357:97–107. https://doi.org/10.1016/j.powtec.2019.08.058

    Article  CAS  Google Scholar 

  5. Kambo HS, Dutta A (2015) Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Convers and Manage 105:746–755. https://doi.org/10.1016/j.enconman.2015.08.031

    Article  CAS  Google Scholar 

  6. Jägers J, Wirtz S, Scherer V, Behr M (2020) Experimental analysis of wood pellet degradation during pneumatic conveying processes. Powder Technol 359:282–291. https://doi.org/10.1016/j.powtec.2019.10.004

    Article  CAS  Google Scholar 

  7. Nielsen SK, Mandø M, Rosenørn AB (2020) Review of die design and process parameters in the biomass pelleting process. Powder Technol 364:971–985. https://doi.org/10.1016/j.powtec.2019.10.051

    Article  CAS  Google Scholar 

  8. Chen WH, Peng J, Bi XT (2015) A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sust Energ Rev 44:847–866. https://doi.org/10.1016/j.rser.2014.12.039

    Article  CAS  Google Scholar 

  9. Kumar L, Koukoulas AA, Mani S, Satyavolu J (2016) Integrating Torrefaction in the wood pellet industry: a critical review. Energy Fuel 31(1):37–54. https://doi.org/10.1021/acs.energyfuels.6b02803

    Article  CAS  Google Scholar 

  10. Azargohar R, Soleimani M, Nosran S, Bond T, Karunakaran C, Dalai AK, Tabil LG (2019) Thermo-physical characterization of torrefied fuel pellet from co-pelletization of canola hulls and meal. Ind Crop Prod 128:424–435. https://doi.org/10.1016/j.indcrop.2018.11.042

    Article  CAS  Google Scholar 

  11. Lam SS, Tsang YF, Yek PNY, Liew RK, Osman MS, Peng W, Lee WH, Park Y-KJPS, Protection E (2019) Co-processing of oil palm waste and waste oil via microwave co-torrefaction: a waste reduction approach for producing solid fuel product with improved properties. Process Saf Environ Protect 128:30–35. https://doi.org/10.1016/j.psep.2019.05.034

    Article  CAS  Google Scholar 

  12. Zhang C, Ho SH, Chen WH, Xie Y, Liu Z, Chang JS (2018) Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Appl Energy 220:598–604. https://doi.org/10.1016/j.apenergy.2018.03.129

    Article  CAS  Google Scholar 

  13. Bergman PCA (2005) Combined torrefaction and pelletisation, vol ECN-C-05-073. Energy research Centre of the Netherlands (ECN). Petten, Netherlands

    Google Scholar 

  14. Manouchehrinejad M, Mani S (2018) Torrefaction after pelletization (TAP): analysis of torrefied pellet quality and co-products. Biomass Bioenergy 118:93–104. https://doi.org/10.1016/j.biombioe.2018.08.015

    Article  CAS  Google Scholar 

  15. Stelte W, Nielsen NPK, Hansen HO, Dahl J, Lei S, Sanadi AR (2013) Pelletizing properties of torrefied wheat straw. Biomass Bioenergy 53(49):105–112. https://doi.org/10.1016/j.biombioe.2012.12.025

    Article  CAS  Google Scholar 

  16. Rudolfsson M, Borén E, Pommer L, Nordin A, Lestander TAJAE (2017) Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass. Appl Energy 191:414–424. https://doi.org/10.1016/j.apenergy.2017.01.035

    Article  CAS  Google Scholar 

  17. Ghiasi B, Kumar L, Furubayashi T, Lim CJ, Bi X, Kim CS, Sokhansanj SJAE (2014) Densified biocoal from woodchips: is it better to do torrefaction before or after densification? Appl Energy 134:133–142. https://doi.org/10.1016/j.apenergy.2014.07.076

    Article  CAS  Google Scholar 

  18. Fang XW, Turner NC, Palta JA, Yu MX, Gao TP, Li FM (2014) The distribution of four Caragana species is related to their differential responses to drought stress. Plant Ecol 215(1):133–142. https://doi.org/10.1007/s11258-013-0285-8

    Article  Google Scholar 

  19. Zhang J, Guo Y (2014) Physical properties of solid fuel briquettes made from Caragana korshinskii Kom. Powder Technol 256:293–299. https://doi.org/10.1016/j.powtec.2014.02.025

    Article  CAS  Google Scholar 

  20. Fengkun SUNZX (2014) Research on advantage and new use of Korshinsk Peashrub resources. Agric Sci Technol 15(4):709–712

    Google Scholar 

  21. Peng J, Wang J, Bi XT, Lim CJ, Sokhansanj S, Peng H, Jia D (2015) Effects of thermal treatment on energy density and hardness of torrefied wood pellets. Fuel Process Technol 129:168–173. https://doi.org/10.1016/j.fuproc.2014.09.010

    Article  CAS  Google Scholar 

  22. Shang L, Nielsen NPK, Dahl J, Stelte W, Ahrenfeldt J, Holm JK, Thomsen T, Henriksen UB (2012) Quality effects caused by torrefaction of pellets made from scots pine. Fuel Process Technol 101:23–28. https://doi.org/10.1016/j.fuproc.2012.03.013

    Article  CAS  Google Scholar 

  23. Bian J, Peng F, Peng P, Xu F, R-CJCr S (2010) Isolation and fractionation of hemicelluloses by graded ethanol precipitation from Caragana korshinskii. Carbohydr Res 345(6):802–809. https://doi.org/10.1016/j.carres.2010.01.014

    Article  CAS  PubMed  Google Scholar 

  24. Bai X, Wang G, Gong C, Yu Y, Liu W, Wang D (2017) Co-pelletizing characteristics of torrefied wheat straw with peanut shell. Bioresour Technol 233(complete):373–381. https://doi.org/10.1016/j.biortech.2017.02.091

    Article  CAS  PubMed  Google Scholar 

  25. Nguyen QN, Cloutier A, Achim A, Stevanovic T (2015) Effect of process parameters and raw material characteristics on physical and mechanical properties of wood pellets made from sugar maple particles. Biomass Bioenergy 80:338–349. https://doi.org/10.1016/j.biombioe.2015.06.010

    Article  Google Scholar 

  26. Faizal HM, Shamsuddin HS, Harif MHM, Hanaffi MFMA, Rahman MRA, Rahman MM, Latiff ZA (2018) Torrefaction of densified mesocarp fibre and palm kernel shell. Renew Energy 122:419–428. https://doi.org/10.1016/j.renene.2018.01.118

    Article  CAS  Google Scholar 

  27. Friedl A, Padouvas E, Rotter H, Varmuza K (2005) Prediction of heating values of biomass fuel from elemental composition. Ana Chim Acta 544(1):191–198. https://doi.org/10.1016/j.aca.2005.01.041

    Article  CAS  Google Scholar 

  28. Zhang C, Ho S-H, Chen W-H, Fu Y, Chang J-S, Bi X (2019) Oxidative torrefaction of biomass nutshells: evaluations of energy efficiency as well as biochar transportation and storage. Appl Energy 235:428–441. https://doi.org/10.1016/j.apenergy.2018.10.090

    Article  CAS  Google Scholar 

  29. Lu KM, Lee WJ, Chen WH, Liu SH, Lin TC (2012) Torrefaction and low temperature carbonization of oil palm fiber and Eucalyptus in nitrogen and air atmospheres. Bioresour Technol 123:98–105. https://doi.org/10.1016/j.biortech.2012.07.096

    Article  CAS  PubMed  Google Scholar 

  30. Pimchuai A, Dutta A, Basu P (2010) Torrefaction of agriculture residue to enhance combustible properties†. Energy Fuel 24(9):4638–4645. https://doi.org/10.1021/ef901168f

    Article  CAS  Google Scholar 

  31. Li MF, Chen CZ, Li X, Shen Y, Bian J, Sun RC (2015) Torrefaction of bamboo under nitrogen atmosphere: influence of temperature and time on the structure and properties of the solid product. Fuel 161:193–196. https://doi.org/10.1016/j.fuel.2015.08.052

    Article  CAS  Google Scholar 

  32. Oluoti K, Doddapaneni TRKC, Richards T (2018) Investigating the kinetics and biofuel properties of Alstonia congensis and Ceiba pentandra via torrefaction. Energy 150:134–141. https://doi.org/10.1016/j.energy.2018.02.086

    Article  CAS  Google Scholar 

  33. Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ (2008) Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89(2):169–175. https://doi.org/10.1016/j.fuproc.2007.09.002

    Article  CAS  Google Scholar 

  34. Chew JJ, Doshi V (2011) Recent advances in biomass pretreatment – Torrefaction fundamentals and technology. Renew Sust Energ Rev 15(8):4212–4222. https://doi.org/10.1016/j.rser.2011.09.017

    Article  Google Scholar 

  35. Boonstra MJ, Acker J, Tjeerdsma BF, Kegel EV (2007) Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann of For Sci 64(7):679–690. https://doi.org/10.1051/forest:2007048

    Article  Google Scholar 

  36. Peng J, Bi H, Lim C, Sokhansanj S (2013) Study on density, hardness, and moisture uptake of torrefied wood pellets. Energy Fuel 27(2):967–974. https://doi.org/10.1021/ef301928q

    Article  CAS  Google Scholar 

  37. Bergman PCABAR, Kiel JHA, Zwart RWH (2005) Torrefaction for biomass co-firing in existing coal-fired power stations “BIOCOAL”. vol ECN-C-05-013. Energy research Centre of the Netherlands (ECN), Petten, Netherlands

  38. Li MF, Li X, Bian J, Chen CZ, Yu YT, Sun RC (2015) Effect of temperature and holding time on bamboo torrefaction. Biomass Bioenergy 83:366–372. https://doi.org/10.1016/j.biombioe.2015.10.016

    Article  CAS  Google Scholar 

  39. Svoboda KMP, Hartman M et al (2009) Pretreatment and feeding of biomass for pulverized entrained flow gasification. Fuel Process Technol 90(5):629–635. https://doi.org/10.1016/j.fuproc.2008.12.005

    Article  CAS  Google Scholar 

  40. Felfli FF, Luengo CA, Suárez JA, Beatón PA (2005) Wood briquette torrefaction. Energy for Sustainable Development 9(3):19–22. https://doi.org/10.1016/S0973-0826(08)60519-0

    Article  Google Scholar 

  41. Zhang Y, Bi P, Wang J, Jiang P, Wu X, He X, Liu J, Zhou X, Li Q (2015) Production of jet and diesel biofuels from renewable lignocellulosic biomass. Appl Energy 150:128–137. https://doi.org/10.1016/j.apenergy.2015.04.023

    Article  CAS  Google Scholar 

  42. Yue Y, Singh H, Singh B, Mani S (2017) Torrefaction of sorghum biomass to improve fuel properties. Bioresour Technol 232:372–379. https://doi.org/10.1016/j.biortech.2017.02.060

    Article  CAS  PubMed  Google Scholar 

  43. Mark J, Ptasinski, Krzysztof J, Janssen, Frans JJG (2006) More efficient biomass gasification via torrefaction. Energy 31(15):3458–3470. https://doi.org/10.1016/j.energy.2006.03.008

    Article  CAS  Google Scholar 

  44. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46. https://doi.org/10.1016/S0960-8524(01)00118-3

    Article  CAS  PubMed  Google Scholar 

  45. Madanayake BN, Gan S, Eastwick C, Ng HK (2017) Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques. Fuel Process Technol 159(complete):287–305. https://doi.org/10.1016/j.fuproc.2017.01.029

    Article  CAS  Google Scholar 

  46. Phanphanich M, Mani S (2011) Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol 102(2):1246–1253. https://doi.org/10.1016/j.biortech.2010.08.028

    Article  CAS  PubMed  Google Scholar 

  47. ISO (2016) ISO/TS 17225–8 Solid biofuels - fuel specifications and classes. Part 8: Graded Thermally Treated and Densified Biomass Fuels. Sweden

  48. Dhungana A, Dutta A, Basu P (2012) Torrefaction of non-lignocellulose biomass waste. Can J Chem Eng 90(1):186–195. https://doi.org/10.1002/cjce.20527

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from China Scholarship Council, China (201706355006). This work was supported by China Agriculture Research System [grant number CARS-34].

Author information

Authors and Affiliations

Authors

Contributions

Yan Yu: Writing and revising

Zheng Zhu: Writing the original draft

Liuqing Wang: Investigation

Xiaopeng Bai: Investigation

Guanghui Wang: Supervision, writing - review and editing

Corresponding author

Correspondence to Guanghui Wang.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval

Not applicable.

Consent for Publication

All the authors agree to publish this article in BioEnergy Research.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Torrefaction treatment improved the storage performance of Caragana pellets significantly.

2. Torrefaction temperature contributed more to the fuel properties than the residence time.

3. Torrefaction with low residence time can also achieve high fuel properties of Caragana pellet.

Supplementary Information

ESM 1

(DOCX 887 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhu, Z., Wang, L. et al. Effect of Torrefaction Treatment on Physical and Fuel Properties of Caragana (Caragana korshinskii) Pellets. Bioenerg. Res. 14, 1277–1288 (2021). https://doi.org/10.1007/s12155-020-10235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10235-3

Keywords

Navigation