Skip to main content
Log in

The traveling wave formulation of a splitting chamber containing reactive components

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The present work investigates the traveling wave formulation and their scattering characteristics in a waveguide having splitting expansion chamber. The segments of the chamber contain sandwiched elastic components backed by rigid cavities and absorbent linings. The structure is radiated by a plane wave mode incident which scatter on interaction with the expansion chamber. The mode-matching (MM) solution is developed to investigate the attenuation of fluid–structure coupled/uncoupled waves with reference to the properties of elastic components and absorbent material. The eigenmodes of segments comprising elastic components are non-orthogonal, and use of generalized orthogonal characteristics yields the convergent solution. The MM solution is validated altogether through apposite mathematical and physical arguments. Moreover, in low-frequency regime, the MM results are compared with low-frequency approximation, and a good agreement is found. Furthermore, it is observed that the characteristics of elastic components and the properties of absorbent material significantly affect the transmission loss, absorbing power and scattering energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Scott, R.A.: The propagation of sound between walls of porous material. Proc. Phys. Soc. 58, 358–368 (1946)

    Article  Google Scholar 

  2. Ko, S.H.: Theoretical analyses of sound attenuation in acoustically lined flow ducts separated by porous splitters (rectangular, annular, circular ducts). J. Sound Vib. 39, 471–487 (1975)

    Article  MATH  Google Scholar 

  3. Kirby, R., Cummings, A.: The impedance of perforated plates subjected to grazing gas flow and backed by porous media. J. Sound Vib. 217, 619–636 (1998)

    Article  Google Scholar 

  4. MacLaren, J.F.T., Tramschek, A.B., Pastrana, O.F.: A study of unsteady gas flow in perforated pipes in compressor systems. Int. Compress. Eng. Conf. 215, 360–367 (1976)

    Google Scholar 

  5. Selamet, A., Lee, I.J., Huff, N.T.: Acoustic attenuation of hybrid silencers. J. Sound Vib. 262, 509–527 (2003)

    Article  Google Scholar 

  6. Esteve, S.J., Johnson, M.E.: Development of an adaptive Helmholtz resonator for broadband noise control. Proc. Int. Mech. Eng. Cong. Expos. 61179, 47–53 (2004)

    Google Scholar 

  7. McAlpine, A., Fisher, M.J.: On the prediction of ‘buzz-saw’ noise in acoustically lined aero-engine inletducts. J. Sound Vib. 265(1), 175–200 (2003)

    Article  Google Scholar 

  8. Kruger, J.K.: The calculation of actively absorbing silencers in rectangular ducts. J. Sound Vib. 257(5), 887–902 (2002)

    Article  Google Scholar 

  9. Hughes, I.J., Dowling, A.P.: The Absorption of Sound by Perforated Linings, vol. 218, pp. 299–335. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  10. Laugesen, S.: Active control of multimodal propagation of tonal noise in ducts. J. Sound Vib. 195(1), 33–56 (1996)

    Article  Google Scholar 

  11. Lee, J.W., Kim, Y.Y.: Topology optimization of muffler internal partitions for improving acoustical attenuation performance. Int. J. Numer. Meth. Eng. 80, 455–477 (2008)

    Article  MATH  Google Scholar 

  12. Hamakawa, H., Miyazaki, M., Asai, Y., Kurihara, E., Nishida, E., Hayashi, H.: Prediction of acoustic absorption performance of a perforated plate with air jets. J. Therm. Sci. 26(4), 378–384 (2017)

    Article  Google Scholar 

  13. Selamet, A., Ji, Z.L.: Acoustic attenuation performance of circular expansion chambers with extended inlet/outlet. J. Sound Vib. 223, 197–212 (1999)

    Article  Google Scholar 

  14. Selamet, A., Denia, F.D., Besa, A.J.: Acoustic behavior of circular dual-chamber mufflers. J. Sound Vib. 265, 967–985 (2003)

    Article  Google Scholar 

  15. Denia, F.D., Selamet, A., Fuenmayor, F.J., Kirby, R.: Acoustic attenuation performance of perforated dissipative mufflers with empty inlet/outlet extensions. J. Sound Vib. 302, 1000–1017 (2007)

    Article  Google Scholar 

  16. Huang, L.: Modal analysis of drum silencer. J. Acoust. Soc. Am. 112(5), 2014–2025 (2002)

    Article  Google Scholar 

  17. Huang, L.: Broadband sound reflection by plates covering side-branch cavities in a duct. J. Acoust. Soc. Am. 119, 2628–2638 (2006)

    Article  Google Scholar 

  18. Wu, T.W., Wan, G.C.: Muffler performance studies using a direct mixed-body boundary element method and a three-point method for evaluating transmission loss. J. Vib. Acoust. 118, 479–484 (1996)

    Article  Google Scholar 

  19. Chiu, M.C.: Shape optimization of multi-chamber mufflers with plug-inlet tube on a venting process by genetic algorithms. Appl. Acoust. 71, 495–505 (2010)

    Article  Google Scholar 

  20. Mimani, A., Munjal, M.L.: Transverse plane wave analysis of short elliptical chamber mufflers: an analytical approach. J. Sound Vib. 330, 1472–1489 (2011)

    Article  Google Scholar 

  21. Ouisse, M., Maxit, L., Cacciolati, C., Guyader, J.L.: Patch transfer functions as a tool to couple linear acoustic problems. J. Acoust. Soc. Am. 127, 458–466 (2005)

    Google Scholar 

  22. Lawrie, J.B., Guled, I.M.M.: On tuning a reactive silencer by varying the position of an internal membrane. J. Acoust. Soc. Am. 120(2), 780–790 (2006)

    Article  Google Scholar 

  23. Ayub, M., Tiwana, M.H., Mann, A.B.: Wiener–Hopf analysis of an acoustic plane wave in a trifurcated waveguide. Arch. Appl. Mech. 81, 701–713 (2011)

    Article  MATH  Google Scholar 

  24. Nolde, E., Pichugin, A.V., Kaplunov, J.: An asymptotic higher-order theory for rectangular beams. Proc. Math. Phys. Eng. Sci. 474(2214), 20180001 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Sahin, O., Erbas, B., Kaplunov, J., Savsek, T.: The lowest vibration modes of an elastic beam composed of alternating stiff and soft components. Arch. Appl. Mech. 90, 339–352 (2020)

    Article  Google Scholar 

  26. Peat, K.S., Rathi, K.L.: A finite element analysis of the convected acoustic wave motion in dissipative silencers. J. Sound Vib. 184, 529–545 (1995)

    Article  MATH  Google Scholar 

  27. Kirby, R., Lawrie, J.B.: A point collocation approach to modelling large dissipative silencers. J. Sound Vib. 286, 313–339 (2005)

    Article  Google Scholar 

  28. Maurel, A., Mercier, J.F., Félix, S.: Wave propagation through penetrable scatterers in a waveguide and through a penetrable grating. J. Acoust. Soc. Am. 135, 165 (2014). https://doi.org/10.1121/1.4836075

    Article  Google Scholar 

  29. Lawrie, J.B., Abrahams, I.D.: An orthogonality condition for a class of problem with high order boundary conditions; applications in sound/structure interaction. Q. J. Mech. Appl. Math. 52, 161–181 (1999)

    Article  MATH  Google Scholar 

  30. Lawrie, J.B.: On Eigenfunction expansions associated with wave propagation along ducts with wave-bearing boundaries. IMA J. Appl. Math. 72, 376–394 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lawrie, J.B.: Comments on a class of orthogonality relations relevant to fluid–structure interaction. Meccanica 47(3), 783–788 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Afzal, M., Nawaz, R., Ullah, A.: Attenuation of dissipative device involving coupled wave scattering and change in material properties. Appl. Math. Comput. 290, 154–163 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Shafique, S., Afzal, M., Nawaz, R.: Mode-Matching analysis of fluid structure coupled wave scattering between two flexible waveguides. Can. J. Phys. 95, 1–25 (2017)

    Article  Google Scholar 

  34. Afzal, M., Ayub, M., Nawaz, R., Wahab, A.: Mode-matching solution of a scattering problem in flexible waveguide with abrupt geometric changes. Am. Math. Soc. 660, 113–129 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Dowling, A.P., Fowcs Williams, J.E.: Sound and Sources of Sound. Ellis Horwood, London (1983)

    MATH  Google Scholar 

  36. Nawaz, R., Afzal, M., Ayub, M.: Acoustic propagation in two-dimensional waveguide for membrane bounded duct. Commun. Nonlinear Sci. Numer. Simul. 20, 421–435 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nawaz, R., Lawrie, J.B.: Scattering of a fluid-structure coupled wave at a flanged junction between two flexible waveguides. J. Acoust. Soc. Am. 134(3), 1939–1949 (2014)

    Article  Google Scholar 

  38. Morse, P.M., Ingard, K.V.: Encyclopedia of Physics: Acoustics, I. Springer, Berlin (1961)

    Google Scholar 

  39. Hassan, M., Rawlins, A.D.: Sound radiation in a planar trifurcated lined duct. Wave Mot. 29, 157–174 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Afzal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, M., Satti, J.U. The traveling wave formulation of a splitting chamber containing reactive components. Arch Appl Mech 91, 1959–1980 (2021). https://doi.org/10.1007/s00419-020-01864-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01864-3

Keywords

Navigation