Skip to main content
Log in

Precipitation Behavior of Al3(Sc,Zr) Particles in High-Alloyed Al–Zn–Mg–Cu–Zr–Sc Alloy During Homogenization

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Precipitation behavior of Al3(Sc,Zr) particles in a new high-alloyed Al–Zn–Mg–Cu–Zr–Sc aluminum alloy during homogenization was investigated by use of three-dimensional atom probe, transition electron microscope and high-resolution transition electron microscope. The results indicate that Al3Sc was the precursor of Al3(Sc,Zr) precipitate. The supersaturated solid solution containing Sc decomposed at 250 °C, forming Sc-rich clusters and gradually developing into Al3Sc nuclei. In multicomponent system containing Zr and Sc, the process of Al3Sc nucleus transforming to mature Al3(Sc,Zr) particle was controlled by diffusion. In the early stage of nuclei growth, Zr atoms did not have long-range diffusion capacity, but only Sc atoms diffused freely. With the increase in temperature, Zr atoms began to diffuse over long distance and approach to Al3Sc nuclei driven by chemical potential gradient, and then enrich around them to form Zr-rich thin layer, thus forming Al3(Sc,Zr) structure of Al3Sc core + Zr-rich shell. During isothermal annealing at 440 °C for different holding hours, the mean diameters of the Sc-containing particles after 1 h, 10 h, 36 h and 100 h were 10.9 nm, 15.5 nm, 14.3 nm and 16.7 nm, respectively. The coarsening coefficient for Al3(Sc,Zr) precipitates is about three orders of magnitude smaller than that of Al3Sc particles, showing much better thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dursun, T.; Soutis, C.: Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862–871 (2014)

    Article  Google Scholar 

  2. Fridlyander, I.N.: Russian aluminum alloys for aerospace and transport applications. Mater. Sci. Forum 331–337, 921–926 (2000)

    Article  Google Scholar 

  3. Heinz, A.; Haszler, A.; Keidel, C.; Moldenhauer, S.; Benedictus, R.; Miller, W.S.: Recent development in aluminium alloys for aerospace applications. Mater. Sci. Eng. A 280, 102–107 (2000)

    Article  Google Scholar 

  4. Warner, T.: Recently-developed aluminium solutions for aerospace applications. Mater. Sci. Forum 519–521, 1271–1278 (2006)

    Article  Google Scholar 

  5. Dumont, M.; Steuwer, A.; Deschamps, A.; Peel, M.; Withers, P.: Microstructure mapping in friction stir welds of 7449 aluminium alloy using SAXS. Acta Mater. 54, 4793–4801 (2006)

    Article  Google Scholar 

  6. Malarvizhi, S.; Balasubramanian, V.: Fatigue crack growth resistance of gas tungsten arc, electron beam and friction stir welded joints of AA2219 aluminium alloy. Mater. Des. 32, 1205–1214 (2011)

    Article  Google Scholar 

  7. Su, J.Q.; Nelson, T.W.; Mishra, R.; Mahoney, M.: Microstructural investigation of friction stir welded 7050–T651 aluminium. Acta Mater. 51, 713–729 (2003)

    Article  Google Scholar 

  8. Zhao, Y.; Lu, Z.; Yan, K.; Huang, L.: Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys. Mater. Des. 65, 675–681 (2015)

    Article  Google Scholar 

  9. Norman, A.F.; Hyde, K.; Costello, F.; Thompson, S.; Birley, S.; Prangnell, P.B.: Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings: for improvements in fusion welding. Mater. Sci. Eng. A 354, 188–198 (2003)

    Article  Google Scholar 

  10. He, Y.D.; Zhang, X.M.; You, J.H.: Effect of minor Sc and Zr on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy. Trans. Nonferrous Met. Soc. China 16, 1228–1235 (2006)

    Article  Google Scholar 

  11. Deng, Y.; Peng, B.; Xu, G.; Pan, Q.; Yin, Z.; Ye, R.; Wang, Y.; Lu, L.: Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys. Mater. Sci. Eng. A 639, 500–513 (2015)

    Article  Google Scholar 

  12. Huang, X.; Pan, Q.; Li, B.; Liu, Z.; Huang, Z.; Yin, Z.: Effect of minor Sc on microstructure and mechanical properties of Al–Zn–Mg–Zr alloy metal–inert gas welds. J. Alloy Compd. 629, 197–207 (2015)

    Article  Google Scholar 

  13. Wu, L.M.; Wang, W.H.; Hsu, Y.F.; Trong, S.: Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al–Zn–Mg–Sc–Zr alloy. J. Alloy Compd. 456, 163–169 (2008)

    Article  Google Scholar 

  14. Schöbel, M.; Pongratz, P.; Degischer, H.P.: Coherency loss of Al3(Sc, Zr) precipitates by deformation of an Al–Zn–Mg alloy. Acta Mater. 60, 4247–4254 (2012)

    Article  Google Scholar 

  15. Robson, J.D.: A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium. Acta Mater. 52, 1409–1421 (2004)

    Article  Google Scholar 

  16. Elagin, V.I.; Zakharov, V.V.; Rostova, T.D.: Scandium alloyed aluminum alloys. Metallovedenie i Termicheskaya Obrabotka Metallov 1, 24–28 (1992)

    Google Scholar 

  17. Tolley, A.; Radmilovic, V.; Dahmen, U.: Segregation in Al3(Sc, Zr) precipitates in Al–Sc–Zr alloys. Scr. Mater. 52, 621–625 (2005)

    Article  Google Scholar 

  18. Lefebvre, W.; Danoix, F.; Hallem, H.; Forbord, B.; Bostel, A.; Marthinsen, K.: Precipitation kinetic of Al3(Sc, Zr) dispersoids in aluminium. J. Alloy Compd. 470, 107–110 (2009)

    Article  Google Scholar 

  19. Hirano, K.; Fujikawa, S.: Impurity diffusion in aluminum. J Nucl. Mater. 69–70, 564–566 (1978)

    Article  Google Scholar 

  20. Fujikawa, S.I.: Impurity diffusion of scandium in aluminium. Defect Diffus. Forum 143–147, 115–120 (1997)

    Article  Google Scholar 

  21. Senkov, O.N.; Shagiev, M.R.; Senkova, S.V.; Miracle, D.B.: Precipitation of Al3(Sc, Zr) particles in an Al–Zn–Mg–Cu–Sc–Zr alloy during conventional solution heat treatment and its effect on tensile properties. Acta Mater. 56, 3723–3738 (2008)

    Article  Google Scholar 

  22. Xiao, Q.F.; Huang, J.W.; Jiang, Y.G.; Jiang, F.Q.; Wu, Y.F.; Xu, G.F.: Effects of minor Sc and Zr additions on mechanical properties and microstructure evolution of Al−Zn−Mg−Cu alloys. Trans. Nonferrous Met. Soc. China 30, 1429–1438 (2020)

    Article  Google Scholar 

  23. Vlach, M.; Cizek, J.; Kodetova, V.; Leibner, M.; Cieslar, M.; Harcuba, P.; Bajtosova, L.; Kudrnova, H.; Vlasak, T.; Neubert, V.; Cernoskova, E.; Kutalek, P.: Phase transformations in novel hot-deformed Al–Zn–Mg–Cu–Si–Mn–Fe (–Sc–Zr) alloys. Mater. Des. 193, 108821 (2020)

    Article  Google Scholar 

  24. Deschamps, A.; Bley, F.; Livet, F.; Fabregue, D.; David, L.: In-situ small-angle X-ray scattering study of dynamic precipitation in an Al–Zn–Mg–Cu alloy. Philos. Mag. 83, 677–692 (2003)

    Article  Google Scholar 

  25. Røyset, J.; Ryum, N.: Kinetics and mechanisms of precipitation in an Al–02 wt% Sc alloy. Mater. Sci. Eng. A 396, 409–422 (2005)

    Article  Google Scholar 

  26. Forbord, B.; Lefebvre, W.; Danoix, F.; Hallem, H.; Marthinsen, K.: Three dimensional atom probe investigation on the formation of Al3(Sc, Zr)-dispersoids in aluminium alloys. Scr. Mater. 51, 333–337 (2004)

    Article  Google Scholar 

  27. Lide, D.R.: Handbook of Chemistry and Physics, 75th edn. CRC Press, Cleveland (1995)

    Google Scholar 

  28. Lifshitz, I.M.; Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961)

    Article  Google Scholar 

  29. Kuehmann, C.J.; Voorhees, P.W.: Ostwald ripening in ternary alloys. Metall. Mater. Trans. A 27, 937–943 (1996)

    Article  Google Scholar 

  30. Marquis, E.A.; Seidman, D.N.: Nannoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater. 49, 1909–1919 (2001)

    Article  Google Scholar 

  31. Fuller, C.; Murray, J.; Seidman, D.: Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: part I—chemical compositions of Al3(Sc1-χZrχ) precipitates. Acta Mater. 53, 5401–5413 (2005)

    Article  Google Scholar 

  32. Liu, L.; Cui, X.Y.; Jiang, J.T.; Zhang, B.; Nomoto, K.; Zhen, L.; S.P. : Ringer, segregation of the major alloying elements to Al3(Sc, Zr) precipitates in an Al–Zn–Mg–Cu–Sc–Zr alloy. Mater. Charact. 157, 109898 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Nos. 2016YFB0300803 and 2016YFB0300903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiqing Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xiong, B., Li, Z. et al. Precipitation Behavior of Al3(Sc,Zr) Particles in High-Alloyed Al–Zn–Mg–Cu–Zr–Sc Alloy During Homogenization. Arab J Sci Eng 46, 6027–6037 (2021). https://doi.org/10.1007/s13369-020-05268-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05268-x

Keywords

Navigation