Skip to main content
Log in

Thiamine: a key nutrient for yeasts during wine alcoholic fermentation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Alcoholic fermentation is a crucial step of winemaking, during which yeasts convert sugars to alcohol and also produce or biotransform numerous flavour compounds. In this context, nutrients are essential compounds to support yeast growth and ultimately ensure complete fermentation, as well as optimized production of flavour compounds over that of off-flavour compounds. In particular, the vitamin thiamine not only plays an essential cofactor role for several enzymes involved in various metabolic pathways, including those leading to the production of wine-relevant flavour compounds, but also aids yeast survival via thiamine-dependent stress protection functions. Most yeast species are able to both assimilate exogenous thiamine into the cell and synthesize thiamine de novo. However, the mechanism and level of thiamine accumulation depend on several factors. This review provides an in-depth overview of thiamine utilization and metabolism in the model yeast species Saccharomyces cerevisiae, as well as the current knowledge on (1) the intracellular functions of thiamine, (2) the balance between and regulation of uptake and synthesis of thiamine and (3) the multitude of factors influencing thiamine availability and utilization. For the latter, a particular emphasis is placed on conditions occurring during wine fermentation. The adequacy of thiamine concentration in grape must to ensure successful fermentation is discussed together with the effect of thiamine concentration on fermentation kinetics and on wine sensory properties. This knowledge may serve as a resource to optimise thiamine concentrations for optimal industrial application of yeasts.

Key points

• Thiamine uptake is preferred over biosynthesis and is transcriptionally repressed.

• Multiple factors affect thiamine synthesis, availability and uptake for wine yeast.

• Thiamine availability impacts fermentation kinetics and wine’s sensory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aceituno FF, Orellana M, Torres J, Mendoza S, Slater AW, Melo F, Agosin E (2012) Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions. Appl Environ Microbiol 78:8340–8352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandre H, Charpentier C (1998) Biochemical aspects of stuck and sluggish fermentation in grape must. J Ind Microbiol Biotechnol 20:20–27

    Article  CAS  Google Scholar 

  • Amata I (2013) Yeast a single cell protein: characteristics and metabolism. Int J Appl Biol Pharm 4:158–170

    Google Scholar 

  • Bakker J, Clarke RJ (2011) Wine: flavour chemistry. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Bardi L, Cocito C, Marzona M (1999) Saccharomyces cerevisiae cell fatty acid composition and release during fermentation without aeration and in absence of exogenous lipids. Int J Food Microbiol 47:133–140

    Article  CAS  PubMed  Google Scholar 

  • Bartra E, Casado M, Carro D, Campamà C, Piña B (2010) Differential expression of thiamine biosynthetic genes in yeast strains with high and low production of hydrogen sulfide during wine fermentation. J Appl Microbiol 109:272–281

    Article  CAS  PubMed  Google Scholar 

  • Bataillon M, Rico A, Sablayrolles JM, Salmon JM, Barre P (1996) Early thiamin assimilation by yeasts under enological conditions: impact on alcoholic fermentation kinetics. J Ferment Bioeng 82:145–150

    Article  CAS  Google Scholar 

  • Begley TP (1996) The biosynthesis and degradation of thiamin (vitamin B1). Nat Prod Rep 13:177–185

    Article  CAS  PubMed  Google Scholar 

  • Bhagavan NV (2002) Vitamin metabolism. In: Medical biochemistry, 4th edn. Academic press, Cambridge, pp 901–928

    Chapter  Google Scholar 

  • Bisson LF (1999) Stuck and sluggish fermentations. Am J Enol Vitic 50:107–119

    Article  CAS  Google Scholar 

  • Blesic M, Mujakic V, Spaho N, Smajic-Murtic M (2014) Threshold of sensory perception of sulphur dioxide in Herzegovinian white wines [Conference poster]. In: 25th Scientific-Experts Congress on Agriculture and Food Industry, Izmir, 25-27 September 2014. Poster Session, 89-92

  • Boer VM, Tai SL, Vuralhan Z, Arifin Y, Walsh MC, Piper MDW, de Winde JH, Pronk JT, Daran J-M (2007) Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Res 7:604–620

    Article  CAS  PubMed  Google Scholar 

  • Boulton RB, Singleton VL, Bisson LF, Kunkee RE (1996) Principles and practices of winemaking. Chapman Hall, New York

    Book  Google Scholar 

  • Brion C, Ambroset C, Delobel P, Sanchez I, Blondin B (2014) Deciphering regulatory variation of THI genes in alcoholic fermentation indicate an impact of Thi3p on PDC1 expression. BMC Genom 15:1085

  • Broach JR (2012) Nutritional control of growth and development in yeast. Genet 192:73–105

    Article  Google Scholar 

  • Bunik VI (2003) 2-Oxo acid dehydrogenase complexes in redox regulation. Eur J Biochem 270:1036–1042

    Article  CAS  PubMed  Google Scholar 

  • Bunik VI, Tylicki A, Lukashev NV (2013) Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models. FEBS J 280:6412–6442

    Article  CAS  PubMed  Google Scholar 

  • Burrows RJ, Byrne KL, Meacock PA (2000) Isolation and characterization of Saccharomyces cerevisiae mutants with derepressed thiamine gene expression. Yeast 16:1497–1508

    Article  CAS  PubMed  Google Scholar 

  • Bussey H, Umbarger HE (1969) Biosynthesis of branched-chain amino acids in yeast: regulation of synthesis of the enzymes of isoleucine and valine biosynthesis. J Bacteriol 98:623–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambon B, Monteil V, Remize F, Camarasa C, Dequin S (2006) Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Appl Environ Microbiol 72:4688–4694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campobasso N, Costello CA, Kinsland C, Begley TP, Ealick SE (1998) Crystal structure of thiaminase-I from Bacillus thiaminolyticus at 2.0 A resolution. Biochemistry 37:15981–15989

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee A, Jurgenson CT, Schroeder FC, Ealick SE, Begley TP (2007) Biosynthesis of thiamin thiazole in eukaryotes: conversion of NAD to an advanced intermediate. J Am Chem Soc 14:2914–2922

    Article  Google Scholar 

  • Chatterjee A, Abeydeera ND, Bale S, Pai PJ, Dorrestein PC, Russell DH, Ealick SE, Begley TP (2011) Saccharomyces cerevisiae Thi4p is a suicide thiamine thiazole synthase. Nature 478:542–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cressina E, Chen L, Moulin M, Leeper FJ, Abell C, Smith AG (2011) Identification of novel ligands for thiamine pyrophosphate (TPP) riboswitches. Biochem Soc Trans 39:652–657

    Article  CAS  PubMed  Google Scholar 

  • Daudt CE, Parizzi LE (1995) Tiamina e riboflavina: evolução com a maturação de Cabernet Sauvignon e comportamento durante a fermentação com diferentes níveis de anidrido sulfuroso adicionado. Ciência Rural 25:311–314

    Article  Google Scholar 

  • Demir AS, Ayhan P, Sopaci SB (2007) Thiamine pyrophosphate dependent enzyme catalyzed reactions: stereoselective C–C bond formations in water. CLEAN – Soil, Air, Water 35:406–412

    Article  CAS  Google Scholar 

  • Dickinson JR, Dawes IW (1992) The catabolism of branched-chain amino acids occurs via 2-oxoacid dehydrogenase in Saccharomyces cerevisiae. J Gen Microbiol 138:2029–2033

  • Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ, Hewlins MJ (1997) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272:26871–26878

    Article  CAS  PubMed  Google Scholar 

  • Dickinson JR, Salgado LEJ, Hewlins MJ (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278:8028–8034

    Article  CAS  PubMed  Google Scholar 

  • Dittrich HH, Sponholz WR (1975) Die aminosaureabnahme in Botrytis-infizierten Traubenbeeren und die Bilund hoherer Alkohole in deisen Mosten bei ihrer Vergarung. Wein-Wissen 30:188–210

  • Dobrowolski A, Mirończuk AM (2020) The influence of transketolase on lipid biosynthesis in the yeast Yarrowia lipolytica. Microbial Cell Fact 19:1–9

    Article  Google Scholar 

  • Dwivedi BK, Arnold RG (1973) Chemistry of thiamine degradation on food products and model systems. Review. J Agric Food Chem 21:54–60

    Article  CAS  PubMed  Google Scholar 

  • Dyda F, Furey W, Swaminathan S, Sax M, Farrenkopf B, Jordan F (1993) Catalytic centers in the thiamin diphosphate dependent enzyme pyruvate decarboxylase at 2.4-.ANG. resolution. Biochemistry 32:6165–6170

    Article  CAS  PubMed  Google Scholar 

  • Edwards KA, Tu-Maung N, Cheng K, Wang B, Baeumner AJ, Kraft CE (2017) Thiamine assays—advances, challenges, and caveats. ChemistryOpen 6:178–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enjo F, Nosaka K, Ogata M, Iwashima A, Nishimura H (1997) Isolation and characterization of a thiamin transport gene, THI10, from Saccharomyces cerevisiae. J Biol Chem 272:19165–19170

    Article  CAS  PubMed  Google Scholar 

  • Ensom MH, Decarie D (2005) Stability of thiamine in extemporaneously compounded suspensions. Can J Hosp Pharm 58:26–30

    Google Scholar 

  • Estramareix B (1996) Biosynthesis of thiamine. New J Chem 20:607–629

    CAS  Google Scholar 

  • Ferreira D, Galeote V, Sanchez I, Legras JL, Ortiz-Julien A, Dequin S (2017) Yeast multistress resistance and lag-phase characterisation during wine fermentation. FEMS Yeast Res 17:fox051

  • Franco-Luesma E, Sáenz-Navajas MP, Valentin D, Ballester J, Rodrigues H, Ferreira V (2016) Study of the effect of H2S, MeSH and DMS on the sensory profile of wine model solutions by Rate-All-That-Apply (RATA). Food Res Int 87:152–160

    Article  CAS  PubMed  Google Scholar 

  • Haas AL, Laun NP, Begley TP (2005) Thi20, a remarkable enzyme from Saccharomyces cerevisiae with dual thiamin biosynthetic and degradation activities. Bioorg Chem 33:338–344

    Article  CAS  PubMed  Google Scholar 

  • Haddad GS, Loewenstein M (1983) Effect of several heat treatments and frozen storage on thiamine, riboflavin, and ascorbic acid content of milk. J Dairy Sci 66:1601–1606

    Article  CAS  PubMed  Google Scholar 

  • Hall AP, Brinner L, Amerine MA, Morgan AF (1956) The B vitamin content of grapes, musts and wines. Food Res 21:362–371

    Article  CAS  Google Scholar 

  • Hanes JW, Burns KE, Hilmey DG, Chatterjee A, Dorrestein PC, Begley TP (2008) Mechanistic studies on pyridoxal phosphate synthase: the reaction pathway leading to a chromophoric intermediate. J Am Chem Soc 130:3043–3052

    Article  CAS  PubMed  Google Scholar 

  • Haskell BE, Snell EE (1970) Microbiological determination of the vitamin B6 group. Meth Enzym 18:512–519

    Article  Google Scholar 

  • Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. App Environ Microbiol 74:2259–2266

    Article  CAS  Google Scholar 

  • Hohmann S, Meacock PA (1998) Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. Biochim Biophys Acta 1385:201–219

    Article  CAS  PubMed  Google Scholar 

  • Holz M, Otto C, Kretzschmar A, Yovkova V, Aurich A, Pötter M, Marx A, Barth G (2011) Overexpression of alpha-ketoglutarate dehydrogenase in Yarrowia lipolytica and its effect on production of organic acids. Appl Microbiol Biotechnol 89:1519–1526

    Article  CAS  PubMed  Google Scholar 

  • Houtman AC, Du Plessis CS (1986) Nutritional deficiencies of clarified white grape juices and their correction in relation to fermentation. S Afr J Enol Vitic 7:39–46

    CAS  Google Scholar 

  • Hucker B, Wakeling L, Vriesekoop F (2016) Vitamins in brewing: presence and influence of thiamine and riboflavin on wort fermentation. J Inst Brew 122:126–137

    Article  CAS  Google Scholar 

  • Iwashima A, Nose Y (1975) Inhibition of thiamine transport in anaerobic baker’s yeast by iodoacetate, 2,4-dinitrophenol N,N'-dicyclohexylcarbodiimide and fatty acids. Biochim Biophys Acta 399:375–383

    Article  CAS  PubMed  Google Scholar 

  • Iwashima A, Nose Y (1976) Regulation of thiamine transport in Saccharomyces cerevisiae. J Bacteriol 128:855–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwashima A, Nishino H, Nose Y (1973) Carrier-mediated transport of thiamine in baker’s yeast. Biochim Biophys Acta 330:222–234

    Article  CAS  PubMed  Google Scholar 

  • Iwashima A, Wakabayashi Y, Nose Y (1975) Thiamine transport mutants of Saccharomyces cerevisiae. Biochim Biophys Acta 413:243–247

    Article  CAS  PubMed  Google Scholar 

  • Iwashima A, Nishimura H, Nose Y (1979) Soluble and membrane-bound thiamine-binding proteins from Saccharomyces cerevisiae. Biochim Biophys Acta 557:460–468

    Article  CAS  PubMed  Google Scholar 

  • Iwashima A, Nosaka K, Nishimura H, Kimura Y (1986) Some properties of a Saccharomyces cerevisiae mutant resistant to 2-amino-4-methyl-5-β-hydroxyethylthiazole. J Gen Microbiol 132:1541–1546

    CAS  PubMed  Google Scholar 

  • Iwashima A, Kawasaki Y, Kimura Y (1990) Transport overshoot during 2-methyl-4-amino-5-hydroxymethylpyrimidine uptake by Saccharomyces cerevisiae. Biochim Biophys Acta 1028:161–164

    Article  CAS  PubMed  Google Scholar 

  • Jackson RS (2008) Wine science: principles and applications, 3rd edn. Academic press, Cambridge

    Google Scholar 

  • Jenkins AH, Schyns G, Potot S, Sun G, Begley TP (2007) A new thiamin salvage pathway. Nat Chem Biol 3:492–497

    Article  CAS  PubMed  Google Scholar 

  • Jitjaroen W, Sponholz WR, Noga G (2009) Relationship between yeast strains and nutritive supplements and its influence on enological parameters of santol (sandoricum koetjape Merr.) wine production. Witthayasan Kasetsat 43:550–556

    CAS  Google Scholar 

  • Joslyn MA (1951) Nutrient requirements of yeast. Mycopathol Mycol Appl 5:260–276

    Article  Google Scholar 

  • Juhász O, Dworschák E, Kozma P (1987) Nutritive value of different grape musts (Vitis vinifera L.). Plant Foods Hum Nutr 37:275–281

    Article  PubMed  Google Scholar 

  • Julies JM (2019) Evaluating the vitamin requirements of wine-related yeasts and the resultant impact on population dynamics and fermentation kinetics. MSc dissertation, Stellenbosch University

  • Kageyama Y, Murata S (2005) Oxidative formation of thiolesters in a model system of the pyruvate dehydrogenase complex. J Org Chem 70:3140–3147

    Article  CAS  PubMed  Google Scholar 

  • Kamihara T, Nakamura I (1984) Regulation of respiration and its related metabolism by vitamin B 1 and vitamin B 6 in Saccharomyces yeasts. In: Fiechter A (ed) Immobilized biocatalysts Saccharomyces yeasts wastewater treament. Springer, Berlin, pp 35–82

    Google Scholar 

  • Kawasaki C, Shinoda S, Ono T (1967) The growth-stimulating activity of thiamine derivatives on thiamine-requiring microorganisms. XV. Accumulation of thiamine derivatives on the cells of Kloeckera apiculata. Vitamin 36:535–540

  • Kneen MM, Stan R, Yep A, Tyler RP, Saehuan C, McLeish MJ (2011) Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae. FEBS J 278:1842–1853

    Article  CAS  PubMed  Google Scholar 

  • Kowalska E, Kujda M, Wolak N, Kozik A (2012) Altered expression and activities of enzymes involved in thiamine diphosphate biosynthesis in Saccharomyces cerevisiae under oxidative and osmotic stress. FEMS Yeast Res 12:534–546

    Article  CAS  PubMed  Google Scholar 

  • Lafon-Lafourcade S (1983) Wine and brandy. In: Rehm HJ, Reed G (eds) Food and feed production with microorganisms (biotechnology), 5th edn. Weinheim, Verlag Chemie, pp 81–163

    Google Scholar 

  • Lakaye B, Wirtzfeld B, Wins P, Grisar T, Bettendorff L (2004) Thiamine triphosphate, a new signal required for optimal growth of Escherichia coli during amino acid starvation. J Biol Chem 279:17142–17147

    Article  CAS  PubMed  Google Scholar 

  • Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma-a review. S Afr J Enol Vitic 21:97–129

    CAS  Google Scholar 

  • Landolfo S, Politi H, Angelozzi D, Mannazzu I (2008) ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Biochim Biophys Acta 1780:892–898

    Article  CAS  PubMed  Google Scholar 

  • Large PJ (1986) Degradation of organic nitrogen compounds by yeasts. Yeast 2:1–34

    Article  CAS  Google Scholar 

  • Leichter J, Joslyn MA (1969) Kinetics of thiamin cleavage by sulphite. Biochem J 113:611–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonian LH, Lilly VG (1942) The effect of vitamins on ten strains of Saccharomyces cerevisiae. Am J Bot 29:459–464

    Article  CAS  Google Scholar 

  • Li M, Petteys BJ, McClure JM, Valsakumar V, Bekiranov S, Frank EL, Smith JS (2010) Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1. Mol Cell Biol 30:3329–3341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorente B, Fairhead C, Dujon B (1999) Genetic redundancy and gene fusion in the genome of the baker’s yeast Saccharomyces cerevisiae: functional characterization of a three-member gene family involved in the thiamine biosynthetic pathway. Mol Microbiol 32:1140–1152

    Article  CAS  PubMed  Google Scholar 

  • Lukienko PI, Mel'nichenko NG, Zverinskii IV, Zabrodskaya SV (2000) Antioxidant properties of thiamine. Bull Exp Biol Med 130:874–876

    Article  CAS  PubMed  Google Scholar 

  • Machado CR, Praekelt UM, Costa de Oliveira RL, Barbosa ACC, Byrne KL, Meacock PA, Menck CFM (1997) Dual role for yeast THI4 gene in thiamine biosynthesis and DNA damage tolerance. J Mol Biol 273:114–121

    Article  CAS  PubMed  Google Scholar 

  • Makarchikov AF, Lakaye B, Gulyai IE, Czerniecki J, Coumans B, Wins P, Grisar T, Bettendorff L (2003) Thiamine triphosphate and thiamine triphosphatase activities: from bacteria to mammals. Cell Mol Life Sci 60:1477–1488

    Article  CAS  PubMed  Google Scholar 

  • Malandrinos G, Louloudi M, Hadjiliadis N (2006) Thiamine models and perspectives on the mechanism of action of thiamine-dependent enzymes. Chem Soc Rev 35:684–692

    Article  CAS  PubMed  Google Scholar 

  • Marobbio CM, Vozza A, Harding M, Bisaccia F, Palmieri F, Walker JE (2002) Identification and reconstitution of the yeast mitochondrial transporter for thiamine pyrophosphate. EMBO J 21:5653–5661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauri LM, Alzamora SM, ChirifeJ TMJ (2007) Review: kinetic parameters for thiamine degradation in foods and model solutions of high water activity. Int J Food Sci 24:1–9

    Article  Google Scholar 

  • Medina-Silva R, Barros MP, Galhardo RS, Netto LS, Colepicolo P, Menck CF (2005) Heat stress promotes mitochondrial instability and oxidative responses in yeast deficient in thiazole biosynthesis. Res Microbiol 157:275–281

    Article  PubMed  Google Scholar 

  • Mestres M, Busto O, Guasch J (2000) Analysis of organic sulfur compounds in wine aroma. J Chromatogr A 881:569–581

    Article  CAS  PubMed  Google Scholar 

  • Mojzita D, Hohmann S (2006) Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 276:147–161

    Article  CAS  PubMed  Google Scholar 

  • Moreno J, Peinado R (2012) Enological chemistry. Academic Press, Cambridge

    Google Scholar 

  • Moses W, Joslyn MA (1953) The equivalence of thiamin and pyridoxine for a strain of Saccharomyces cerevisiae I: effect on growth rate and carboxylase activity. J Bacteriol 66:197–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller N (2014) Thiamine diphosphate - a natural iminium salt. Its role in microbiological processes during wine preparation and on the aroma of wine. Z Naturforsch 69b:489–500

    Article  Google Scholar 

  • Muller EH, Richards EJ, Norbeck J, Byrne KL, Karlsson K, Pretorius GHJ, Meacock P, Blomberg A, Hohmann S (1999) Thiamine repression and pyruvate decarboxylase autoregulation independently control the expression of the Saccharomyces cerevisiae PDC5 gene. FEBS Lett 449:245–250

    Article  CAS  PubMed  Google Scholar 

  • Nakamura I, Isobe N, Kamihara T, Fukui S (1980) Effects of thiamine and pyridoxine on respiratory activity in Saccharomyces carlsbergensis strain 4228. Arch Microbiol 127:47–51

    Article  CAS  Google Scholar 

  • Nakamura I, Isobe N, Nakamura N, Kamihara T, Fukui S (1981) Mechanism of thiamine-induced respiratory deficiency in Saccharomyces carlsbergensis. J Bacteriol 147:954–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura I, Ohmura Y, Nagami Y, Kamihara T, Fukui S (1982) Thiamin accumulation and growth inhibition in yeasts. Microbiology 128:2601–2609

    Article  CAS  Google Scholar 

  • Neal AL, Weinstock JO, Lampen JO (1965) Mechanisms of fatty acid toxicity for yeast. J Bacteriol 90:126–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neubauer O, Fromherz K (1911) Über den Abbau der Aminosaüren bei der Hefegärung. Hoppe-Seylers Z Physiol Chem 70:326–350

    Article  CAS  Google Scholar 

  • Nielsen J (2014) Synthetic biology for engineering acetyl coenzyme A metabolism in yeast. mBio 5:e02153–e02114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura H, Kawasaki Y, Kaneko Y, Nosaka K, Iwashima A (1992a) A positive regulatory gene, THI3, is required for thiamine metabolism in Saccharomyces cerevisiae. J Bacteriol 174:4701–4706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura H, Kawasaki Y, Kaneko Y, Nosaka K, Iwashima A (1992b) Cloning and characteristics of a positive regulatory gene, THI2(PHO6), of thiamin biosynthesis in Saccharomyces cerevisiae. FEBS Lett 297:155–158

    Article  CAS  PubMed  Google Scholar 

  • Nosaka K (2006) Recent progress in understanding thiamin biosynthesis and its genetic regulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 72:30–40

    Article  CAS  PubMed  Google Scholar 

  • Nosaka K, Kaneko Y, Nishimura H, Iwashima A (1989) A possible role for acid phosphatase with thiamin-binding activity encoded by PHO3 in yeast. FEMS Microbiol Lett 60:55–59

    Article  CAS  Google Scholar 

  • Nosaka K, Kaneko Y, Nishimura H, Iwashima A (1993) Isolation and characterization of a thiamin pyrophosphokinase gene, THI80, from Saccharomyces cerevisiae. J Biol Chem 268:17440–17447

    Article  CAS  PubMed  Google Scholar 

  • Nosaka K, Nishimura H, Kawasaki Y, Tsujihara T, Iwashima A (1994) Isolation and characterization of the THI6 gene encoding a bifunctional thiamin-phosphate pyrophosphorylase/hydroxyethylthiazole kinase from Saccharomyces cerevisiae. J Biol Chem 269:30510–30516

    Article  CAS  PubMed  Google Scholar 

  • Nosaka K, Onozuka M, Konno H, Kawasaki Y, Nishimura H, Sano M, Akaji K (2005) Genetic regulation mediated by thiamin pyrophosphate-binding motif in Saccharomyces cerevisiae. Mol Microbiol 58:467–479

    Article  CAS  PubMed  Google Scholar 

  • Nosaka K, Onozuka M, Konno H, Akaji K (2008) Thiamin-dependent transactivation activity of PDC2 in Saccharomyces cerevisiae. FEBS Lett 582:3991–3996

    Article  CAS  PubMed  Google Scholar 

  • Ochando T, Mouret JR, Humbert-Goffard A, Aguera E, Sablayrolles JM, Farines V (2020) Comprehensive study of the dynamic interaction between SO2 and acetaldehyde during alcoholic fermentation. Food Res Int 136:109607

    Article  CAS  PubMed  Google Scholar 

  • OIV (2020) International code of oenological practices. International Organisation of Vine and Wine, Paris

    Google Scholar 

  • Okonji R, Agboola O (2014) Comparative study of some enzymes in different varieties of fruits. Int J Biol Chem Sci 8:419–425

    Article  Google Scholar 

  • Onozuka M, Konno H, Kawasaki Y, Akaji K, Nosaka K (2008) Involvement of thiaminase II encoded by the THI20 gene in thiamin salvage of Saccharomyces cerevisiae. FEMS Yeast Res 8:266–275

    Article  CAS  PubMed  Google Scholar 

  • Ough CS, Davenport M, Joseph K (1989) Effects of certain vitamins on growth and fermentation rate of several commercial active dry wine yeasts. Am J Enol Vitic 40:208–213

    Article  CAS  Google Scholar 

  • Ournac A, Flanzy M (1958) Localisation et évolution de la vitamine B1 dans le raisin au cours de la maturation. Qual Plant Mater Veg 3-4:415–420

    Article  CAS  Google Scholar 

  • Panijpan B, Ratanaubolchai K (1980) Kinetics of thiamine-polyphenol interactions and mechanism of thiamine disulphide formation. Int J Vitam Nutr Res 50:247–253

    CAS  PubMed  Google Scholar 

  • Patel MS, Nemeria NS, Furey W, Jordan F (2014) The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem 289:16615–16623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perli T, Wronska AK, Ortiz-Merino RA, Pronk JT, Daran JM (2020) Vitamin requirements and biosynthesis in Saccharomyces cerevisiae. Yeast 37:283–304

  • Peynaud E, Lafourcade S (1958) Évolution des vitamines B dans le raisin. Qual Plant Mat Veg 3-4:405–414

    Article  CAS  Google Scholar 

  • Pohl M, Sprenger GA, Müller M (2004) A new perspective on thiamine catalysis. Curr Opin Biotechnol 15:335–342

    Article  CAS  PubMed  Google Scholar 

  • Pozo-Bayón MÁ, Andújar-Ortiz I, Moreno-Arribas MV (2009) Scientific evidences beyond the application of inactive dry yeast preparations in winemaking. Food Res Int 42:754–761

    Article  Google Scholar 

  • Praekelt UM, Byrne KL, Meacock PA (1994) Regulation of THI4 (MOL1), a thiamine-biosynthetic gene of Saccharomyces cerevisiae. Yeast 10:481–490

    Article  CAS  PubMed  Google Scholar 

  • Raghuram V, Lobo Z, Maitra PK (1994) PDC2, a yeast gene essential for synthesis of pyruvate decarboxylase, encodes a novel transcription factor. J Genet 73:17–32

    Article  CAS  Google Scholar 

  • Rapala-Kozik M, Kowalska E, Ostrowska K (2008) Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. J Exp Bot 59:4133–4143

    Article  CAS  PubMed  Google Scholar 

  • Remize F, Andrieu E, Dequin S (2000) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol 66:3151–3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribéreau-Gayon J, Peynaud E, Ribéreau-Gayon P, Sudraud P (1975) Traité d'oenologie. Sciences et techniques du vin. Tome 2. Dunod, Paris

  • Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2006) Handbook of enology, volume 2: the chemistry of wine-stabilization and treatments. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Rintala E, Toivari M, Pitkänen JP, Wiebe MG, Ruohonen L, Penttilä M (2009) Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae. BMC Genomics 10:461

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Navarro S, Llorente B, Rodriguez-Manzaneque MT, Ramne A, Uber G, Marchesan D, Dujon B, Herrero E, Sunnerhagen P, Perez-Ortin JE (2002) Functional analysis of yeast gene families involved in metabolism of vitamins B1 and B6. Yeast 19:1261–1276

    Article  PubMed  Google Scholar 

  • Rollero S, Bloem A, Ortiz-Julien A, Camarasa C, Divol B (2018) Altered fermentation performances, growth, and metabolic footprints reveal competition for nutrients between yeast species inoculated in synthetic grape juice-like medium. Front Microbiol 9:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenfeld E, Beauvoit B, Blondin B, Salmon JM (2003) Oxygen consumption by anaerobic Saccharomyces cerevisiae under enological conditions: effect on fermentation kinetics. Appl Environ Microbiol 69:113–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saerens SMG, Delvaux FR, VerstrepenKJ TJM (2010) Production and biological function of volatile esters in Saccharomyces cerevisiae. Microbial Biotechnol 3:165–177

    Article  CAS  Google Scholar 

  • Samson FE, Katz AM, Harris DL (1955) Effects of acetate and other short-chain fatty acids on yeast metabolism. Arch Biochem Biophys 54:406–423

    Article  CAS  PubMed  Google Scholar 

  • Savocco J, Nootens S, Afokpa W, Bausart M, Chen X, Villers J, Renard HF, Prévost M, Wattiez R, Morsomme P (2019) Yeast α-arrestin Art2 is the key regulator of ubiquitylation-dependent endocytosis of plasma membrane vitamin B1 transporters. PLoS Biol 17:e3000512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schellenberger A, Hübner G, Neef H (1997) Cofactor designing in functional analysis of thiamin diphosphate enzymes. Meth Enzym 279:131–146

    Article  CAS  PubMed  Google Scholar 

  • Schenk G, Duggleby RG, Nixon PF (1998) Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int J Biochem Cell Biol 30:1297–1318

    Article  CAS  PubMed  Google Scholar 

  • Schütz M, Gafner J (1993) Analysis of yeast diversity during spontaneous and induced alcoholic fermentations. J Appl Bacteriol 75:551–558

    Article  Google Scholar 

  • Schütz M, Kunkee RE (1977) Formation of hydrogen sulfide from elemental sulfur during fermentation by wine yeast. Am J Enol Vitic 28:137–144

    Google Scholar 

  • Selvaraju K, Gowsalya R, Vijayakumar R, Nachiappan V (2016) MGL2/YMR210w encodes a monoacylglycerol lipase in Saccharomyces cerevisiae. FEBS Lett 590:1174–1186

    Article  CAS  PubMed  Google Scholar 

  • Shimazono N, Katsura E (1965) Review of Japanese literature on beriberi and thiamine. Vitamin B Research Committee of Japan. Igaku Shoin, Tokyo

  • Shimizu M, Masuo S, Itoh E, Zhou S, Kato M, Takaya N (2016) Thiamine synthesis regulates the fermentation mechanisms in the fungus Aspergillus nidulans. Biosci Biotechnol Biochem 80:1768–1775

    Article  CAS  PubMed  Google Scholar 

  • Singleton CK (1997) Identification and characterization of the thiamine transporter gene of Saccharomyces cerevisiae. Gene 199:111–121

    Article  CAS  PubMed  Google Scholar 

  • Stieglitz B, Levy R, Mateles TI (1974) Thiamine accumulation in yeast. J Appl Chem Biotechnol 24:277–282

  • Stincone A, Prigione A, Cramer T, Wamelink MM, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M (2015) The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 90:927–963

    Article  PubMed  Google Scholar 

  • Suomalainen H, Oura E (1971) In: Rose AH, Harrison SJ (eds) The yeasts, vol 2. Academic Press, New York, p 374

    Google Scholar 

  • Tanaka K, Tazuya K, Yamada K, Kumaoka H (2000) Biosynthesis of thiamin under anaerobic conditions in Saccharomyces cerevisiae. Biol Pharm Bull 23:108–111

  • Tanphaichitr V (1999) Thiamin. In: Shils ME, Olsen JA, Shike M (eds) Modern nutrition in health and disease, 9th edn. Lippincott Williams & Wilkins, Baltimore, pp 381–389

    Google Scholar 

  • Tazuya K, Adachi Y, Masuda K, Yamada K, Kumaoka H (1995a) Origin of the nitrogen atom of pyridoxine in Saccharomyces cerevisiae. Biochim Biophys Acta 1244:113–116

  • Tazuya K, Azumi C, Yamada K, Kumaoka H (1995b) Pyrimidine moiety of thiamin is biosynthesized from pyridoxine and histidine in Saccharomyces cerevisiae. Biochem Mol Biol Int 36:883–888

    CAS  PubMed  Google Scholar 

  • Ter Schure EG, Flikweert MT, van Dijken JP, Pronk JT, Verrips CT (1998) Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae. Appl Environ Microbiol 64:1303–1307

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trevelyan WE, Harrison JS (1954) Studies on yeast metabolism. IV. The effect of thiamine on yeast fermentation. Biochem J 57:561–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuite MF, Oliver SG (1991) Biochemical techniques. In: Saccharomyces. Springer, Boston, pp 283–320

    Chapter  Google Scholar 

  • Tylicki A, Czerniecki J, Dobrzyn P, Matanowska A, Olechno A, Strumilo S (2005) Modification of thiamine pyrophosphate dependent enzyme activity by oxythiamine in Saccharomyces cerevisiae cells. Can J Microbiol 51:833–839

    Article  CAS  PubMed  Google Scholar 

  • Valera MJ, Boido E, Ramos JC, Manta E, Radi R, Dellacassa E, Carrau F (2020) The Mandelate pathway, an alternative to the phenylalanine ammonia lyase pathway for the synthesis of benzenoids in ascomycete yeasts. Appl Environ Microbiol 86:e00701–e00720

    Article  CAS  PubMed  Google Scholar 

  • Van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 1:199–224

    Article  Google Scholar 

  • Voelker AL, Miller J, Running CA, Taylor LS, Mauer LJ (2018) Chemical stability and reaction kinetics of two thiamine salts (thiamine mononitrate and thiamine chloride hydrochloride) in solution. Food Res Int 112:443–456

    Article  CAS  PubMed  Google Scholar 

  • Vuralhan Z, Luttik MAH, Tai SL, Boer VM, Morais MA, Schipper D, Almering MJH, Kötter P, Dickinson JR, Daran JM, Pronk JT (2005) Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol 71:3276–3284

  • Wang J, Cai R, Xu J, Liu Z (2005) Study on the effect of thiamine on the metabolism of yeast by intrinsic fluorescence. J Lumin 20:216–219

    Article  CAS  Google Scholar 

  • White RL, Spenser ID (1982) Thiamin biosynthesis in yeast. Origin of the five-carbon unit of the thiazole moiety. J Am Chem Soc 104:4934–4943

  • Wightman R, Meacock PA (2003) The THI5 gene family of Saccharomyces cerevisiae: distribution of homologues among the hemiascomycetes and functional redundancy in the aerobic biosynthesis of thiamin from pyridoxine. Microbiology 149:1447–1460

    Article  CAS  PubMed  Google Scholar 

  • Wolak N, Kowalska E, Kozik A, Rapala-Kozik M (2014) Thiamine increases the resistance of baker’s yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes. FEMS Yeast Res 14:1249–1262

    Article  CAS  PubMed  Google Scholar 

  • Xing H (2007) Impact of thiamine and pyridoxine on alcoholic fermentations of synthetic grape juice, Doctoral dissertation, Washington State University

  • Yang PF, Pratt DE (1984) Antithiamin activity of polyphenolic antioxidants. J Food Sci 49:489–492

    Article  CAS  Google Scholar 

  • Zeidler J, Sayer BG, Spenser ID (2003) Biosynthesis of vitamin B1 in yeast. Derivation of the pyrimidine unit from pyridoxine and histidine. Intermediacy of urocanic acid. J Am Chem Soc 125:13094–13105

  • Ziro S (1955) Thiamine uptake by yeast cells. J Biochem 42:27–39

    Article  CAS  Google Scholar 

Download references

Funding

This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Number: 113303), the Faculty of AgriSciences’ bursary scheme at Stellenbosch University and Lallemand SAS.

Author information

Authors and Affiliations

Authors

Contributions

PWJL and BD conceived the review. PWJL wrote the manuscript. BD edited it. Both authors approved the final version.

Corresponding author

Correspondence to B Divol.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labuschagne, P., Divol, B. Thiamine: a key nutrient for yeasts during wine alcoholic fermentation. Appl Microbiol Biotechnol 105, 953–973 (2021). https://doi.org/10.1007/s00253-020-11080-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-11080-2

Keywords

Navigation