Skip to main content
Log in

Nb-MCM-Type Mesoporous Material Synthesis Using Ionic Solid as Structure-Directing Agent for In Situ Lipase Immobilization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

MCM-41 and MCM-48 with niobium were successfully synthesized using 1-tetradecyl-3-methylimidazolium chloride ([C14MI]Cl) as a structure-directing agent. The best Si/Nb molar ratio was chosen (Si/Nb = 20) and the CALB enzyme was immobilized in situ in the synthesized Nb-MCM. SEM micrographs showed the formation of very regular spherical agglomerates with a diameter between 0.25 and 0.75 μm. The material presented a surface area of 954 and 704 m2/g and a pore volume of 0.321 and 0.286 cm3/g, for Nb-MCM-41 and Nb-MCM-48, respectively. Also, both materials showed a pore size of 2.261 nm. The number of recycles obtained for the CALB enzyme immobilized in Nb-MCM-41 and Nb-MCM-48 was 26 recycles with a residual activity of 49.62% and 16 recycles with a residual activity of 53.01%, respectively. For both materials, enzymatic activity remained stable for 5 months of storage at room temperature and refrigeration. The supports were able to catalyze the esterification reaction at 40, 60, and 80 °C, showing industrial application in reactions that require high temperatures. This methodology allows the preparation of new highly active and selective enzyme catalysts using niobium and [C14MI]Cl. Also, the new materials can provide greater viability in processes, ensuring a longer service life of catalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Coronas, J. (2010). Present and future synthesis challenges for zeolites. Chemical Engineering Journal, 156(2), 236–242. https://doi.org/10.1016/j.cej.2009.11.006.

    Article  CAS  Google Scholar 

  2. de Aguiar Pedott, V., Bordin, I., dos Santos da Silva, A., Petkowicz, D. I., Finkler, D. E., do Santos, J. H. Z., et al. (2020). Hierarchical pore structure of zeolite/MCM obtained by supramolecular templating using ionic liquid (C16MI·Cl) as the structure-directing agent. Journal of Materials Science, 55(6), 2343–2352. https://doi.org/10.1007/s10853-019-04117-z.

    Article  CAS  Google Scholar 

  3. Kresge, C. T., Vartuli, J. C., Roth, W. J., & Leonowicz, M. E. (2004). The discovery of ExxonMobil’s M41S family of mesoporous molecular sieves. Studies in Surface Science and Catalysis, 148, 53–72. https://doi.org/10.1016/s0167-2991(04)80193-9.

    Article  CAS  Google Scholar 

  4. Luna, F. J., & Schuchardt, U. (2001). Modificação de zeólitas para uso em catálise. Quimica Nova, 24(6), 885–892. https://doi.org/10.1590/S0100-40422001000600027.

    Article  CAS  Google Scholar 

  5. Schwanke, A. J., & Pergher, S. B. (2012). Peneiras moleculares mesoporosas MCM-41: uma perspectiva histórica, o papel de cada reagente na síntese e sua caracterização básica. Perspectiva, 36(135), 113–125.

    Google Scholar 

  6. Méndez, F. J., Franco-López, O. E., Bokhimi, X., Solís-Casados, D. A., Escobar-Alarcón, L., & Klimova, T. E. (2017). Dibenzothiophene hydrodesulfurization with NiMo and CoMo catalysts supported on niobium-modified MCM-41. Applied Catalysis B: Environmental, 219, 479–491. https://doi.org/10.1016/j.apcatb.2017.07.079.

    Article  CAS  Google Scholar 

  7. Vartuli, J. C., Roth, W. J., Beck, J. S., Mccullen, S. B., & Kresge, C. T. (1998). The synthesis and properties of M41S. Molecular Sieves, 1, 97–119. https://doi.org/10.1007/3-540-69615-6_4.

    Article  CAS  Google Scholar 

  8. Mazuco, R. A., Cardoso, P. M. M., Bindaco, É. S., Scherer, R., Castilho, R. O., Faraco, A. A. G., et al. (2018). Maltodextrin and gum Arabic-based microencapsulation methods for anthocyanin preservation in Juçara palm (Euterpe edulis Martius) fruit pulp. Plant Foods for Human Nutrition, 73(3), 209–215. https://doi.org/10.1007/s11130-018-0676-z.

    Article  CAS  PubMed  Google Scholar 

  9. Van Rantwijk, F., Lau, R. M., & Sheldon, R. A. (2003). Biocatalytic transformations in ionic liquids. Trends in Biotechnology, 21(3), 131–138. https://doi.org/10.1016/S0167-7799(03)00008-8.

    Article  CAS  PubMed  Google Scholar 

  10. Sivapragasam, M., Moniruzzaman, M., & Goto, M. (2016). Recent advances in exploiting ionic liquids for biomolecules: solubility, stability and applications. Biotechnology Journal, 11(8), 1000–1013. https://doi.org/10.1002/biot.201500603.

    Article  CAS  PubMed  Google Scholar 

  11. Itoh, T. (2017). Ionic liquids as tool to improve enzymatic organic synthesis. Chemical Reviews, 117(15), 10567–10607. https://doi.org/10.1021/acs.chemrev.7b00158.

    Article  CAS  PubMed  Google Scholar 

  12. Consorti, C. S., de Souza, R. F., Dupont, J., & Suarez, P. A. Z. (2001). Líquidos iônicos contendo o cátion dialquilimidazólio: estrutura, propriedades físico-químicas e comportamento em solução. Química Nova, 24(6), 830–837. https://doi.org/10.1590/s0100-40422001000600021.

    Article  CAS  Google Scholar 

  13. Benzaquén, T. B., Carraro, P. M., & Eimer, G. A. (2020). Utilización de cáscara de arroz como fuente de sílice para la síntesis de materiales mesoporosos y su aplicación en la degradación de diferentes compuestos orgánicos. Revista Tecnología y Ciencia, 1(37), 1–10. https://doi.org/10.33414/rtyc.37.1-10.2020.

    Article  Google Scholar 

  14. Wojtaszek-Gurdak, A., Zielinska, M., & Ziolek, M. (2019). MWW layered zeolites modified with niobium species - surface and catalytic properties. Catalysis Today, 325, 89–97. https://doi.org/10.1016/j.cattod.2018.07.044.

    Article  CAS  Google Scholar 

  15. Guerrero-Pérez, M. O. (2020). The fascinating effect of niobium as catalytic promoting agent. Catalysis Today, 354(March), 19–25. https://doi.org/10.1016/j.cattod.2019.04.008.

    Article  CAS  Google Scholar 

  16. Feliczak-Guzik, A., & Nowak, I. (2019). Application of glycerol to synthesis of solvo-surfactants by using mesoporous materials containing niobium. Microporous and Mesoporous Materials, 277(October 2018), 301–308. https://doi.org/10.1016/j.micromeso.2018.11.008.

    Article  CAS  Google Scholar 

  17. Van Tassel, L., Moilanen, A., & Ruddock, L. W. (2020). Efficient production of wild-type lipase B from Candida antarctica in the cytoplasm of Escherichia coli. Protein Expression and Purification, 165(September 2019), 105498. https://doi.org/10.1016/j.pep.2019.105498.

    Article  CAS  PubMed  Google Scholar 

  18. Ficanha, A. M. M., Antunes, A., Oro, C. E. D., Valduga, A. T., Matuella Moreira, C., Dallago, R. M., & Mignoni, M. (2019). Study of drying conditions of the aerogel obtained by the sol-gel technique for immobilization in situ of lipase Candida antarctica B. Industrial Biotechnology, 15(6), 350–356. https://doi.org/10.1089/ind.2019.0003.

    Article  CAS  Google Scholar 

  19. Ren, S., Li, C., Jiao, X., Jia, S., Jiang, Y., Bilal, M., & Cui, J. (2019). Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal, 373(February), 1254–1278. https://doi.org/10.1016/j.cej.2019.05.141.

    Article  CAS  Google Scholar 

  20. Cui, J., & Jia, S. (2017). Organic–inorganic hybrid nanoflowers: a novel host platform for immobilizing biomolecules. Coordination Chemistry Reviews, 352(29), 249–263. https://doi.org/10.1016/j.ccr.2017.09.008.

    Article  CAS  Google Scholar 

  21. Ficanha, A. M. M., Antunes, A., Oro, C. E. D., Franceschi, E., Dallago, R. M., & Mignoni, M. L. (2021). Immobilization of lipase CALB in organically modified silica. Biointerface Research in Applied Chemistry, 11(1), 7814–7825. https://doi.org/10.33263/BRIAC111.78147825.

    Article  CAS  Google Scholar 

  22. Zhong, L., Feng, Y., Wang, G., Wang, Z., Bilal, M., Lv, H., et al. (2020). Production and use of immobilized lipases in/on nanomaterials: a review from the waste to biodiesel production. International Journal of Biological Macromolecules, 152, 207–222. https://doi.org/10.1016/j.ijbiomac.2020.02.258.

    Article  CAS  PubMed  Google Scholar 

  23. Cao, S., Xu, P., Ma, Y., Yao, X., Yao, Y., Zong, M., et al. (2016). Recent advances in immobilized enzymes on nanocarriers. Cuihua Xuebao/Chinese Journal of Catalysis, 37(11), 1814–1823. https://doi.org/10.1016/S1872-2067(16)62528-7.

    Article  CAS  Google Scholar 

  24. Liu, J., Ma, R. T., & Shi, Y. P. (2020). “Recent advances on support materials for lipase immobilization and applicability as biocatalysts in inhibitors screening methods”-a review. Analytica Chimica Acta, 1101, 9–22. https://doi.org/10.1016/j.aca.2019.11.073.

    Article  CAS  PubMed  Google Scholar 

  25. Mignoni, M. L. (2012). Zeólitas obtidas com líquidos iônicos como direcionadores de estrutura: síntese e reatividade. Universidade Federal do Rio Grande do Sul.

  26. Kumar, D., Schumacher, K., Du Fresne von Hohenesche, C., Grün, M., & Unger, K. K. (2001). MCM-41, MCM-48 and related mesoporous adsorbents: their synthesis and characterisation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187–188, 109–116. https://doi.org/10.1016/S0927-7757(01)00638-0.

    Article  Google Scholar 

  27. Ficanha, A. M. M., Antunes, A., Oro, C. E. D., Dallago, R. M., & Mignoni, M. L. (2020). Immobilization of Candida antarctica B (CALB) in silica aerogel: morphological characteristics and stability. Biointerface Research in Applied Chemistry, 10(6), 6744–6756. https://doi.org/10.33263/BRIAC106.67446756.

    Article  CAS  Google Scholar 

  28. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319. https://doi.org/10.1021/ja01269a023.

    Article  CAS  Google Scholar 

  29. Rodrigues, L. A., & Silva, M. L. C. P. d. (2009). Adsorção de íons fosfato em óxido de nióbio hidratado. Química Nova, 32(5), 1206–1211. https://doi.org/10.1590/s0100-40422009000500023.

    Article  CAS  Google Scholar 

  30. Li, R., Chong, S., Altaf, N., Gao, Y., Louis, B., & Wang, Q. (2019). Synthesis of ZSM-5/siliceous zeolite composites for improvement of hydrophobic adsorption of volatile organic compounds. Frontiers in Chemistry, 7(July), 1–10. https://doi.org/10.3389/fchem.2019.00505.

    Article  CAS  Google Scholar 

  31. Teixeira, V. G., Coutinho, F. M. B., & Gomes, A. S. (2001). Principais métodos de caracterização da porosidade de resinas à base de divinilbenzeno. Quimica Nova, 24(6), 808–818. https://doi.org/10.1590/s0100-40422001000600019.

    Article  Google Scholar 

  32. Battiston, C. S. Z., Ficanha, A. M. M., Levandoski, K. L. D., da Silva, B. A., Battiston, S., Dallago, R. M., & Mignoni, M. L. (2017). Immobilization of lipase on mesoporous molecular sieve MCM-48 obtained using ionic solid as a structure director and esterification reaction on solvent-free. Química Nova, 40(3), 293–298. https://doi.org/10.21577/0100-4042.20170011.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to URI Erechim, National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), and Research Support Foundation of the State of Rio Grande do Sul (FAPERGS).

Funding

The research project was supported by URI Erechim, CNPq, CAPES, and FAPERGS.

Author information

Authors and Affiliations

Authors

Contributions

IB and MM conceptualized the study. All authors analyzed, interpreted the data, and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marcelo Luis Mignoni.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• MCM-41 and MCM-48 with niobium and [C14MI]Cl were successfully synthesized

• The best Si/Nb molar ratio chosen was Si/Nb = 20

• CALB immobilized in Nb-MCM-41 and Nb-MCM-48 showed 26 and 16 recycles, respectively

• Enzymatic activity remained stable for 5 months for both supports

• The supports were able to catalyze the esterification reaction at 40, 60, and 80 °C

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordin, I., de Aguiar Pedott, V., Demaman Oro, C.E. et al. Nb-MCM-Type Mesoporous Material Synthesis Using Ionic Solid as Structure-Directing Agent for In Situ Lipase Immobilization. Appl Biochem Biotechnol 193, 1072–1085 (2021). https://doi.org/10.1007/s12010-020-03484-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03484-7

Keywords

Navigation