Skip to main content

Advertisement

Log in

Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers

  • Bioengineering for Women’s Health
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The burden of cancer continues to increase in society and negatively impacts the lives of numerous patients. Due to the high cost of current treatment strategies, there is a crucial unmet need to develop inexpensive preclinical platforms to accelerate the process of anti-cancer drug discovery to improve outcomes in cancer patients, most especially in female patients. Many current methods employ expensive animal models which not only present ethical concerns but also do not often accurately predict human physiology and the outcomes of anti-cancer drug responsiveness. Conventional treatment approaches for cancer generally include systemic therapy after a surgical procedure. Although this treatment technique is effective, the outcome is not always positive due to various complex factors such as intratumor heterogeneity and confounding factors within the tumor microenvironment (TME). Patients who develop metastatic disease still have poor prognosis. To that end, recent efforts have attempted to use 3D microengineered platforms to enhance the predictive power and efficacy of anti-cancer drug screening, ultimately to develop personalized therapies. Fascinating features of microengineered assays, such as microfluidics, have led to the advancement in the development of the tumor-on-chip technology platforms, which have shown tremendous potential for meaningful and physiologically relevant anti-cancer drug discovery and screening. Three dimensional microscale models provide unprecedented ability to unveil the biological complexities of cancer and shed light into the mechanism of anti-cancer drug resistance in a timely and resource efficient manner. In this review, we discuss recent advances in the development of microengineered tumor models for anti-cancer drug discovery and screening in female-related cancers. We specifically focus on female-related cancers to draw attention to the various approaches being taken to improve the survival rate of women diagnosed with cancers caused by sex disparities. We also briefly discuss other cancer types like colon adenocarcinomas and glioblastoma due to their high rate of occurrence in females, as well as the high likelihood of sex-biased mutations which complicate current treatment strategies for women. We highlight recent advances in the development of 3D microscale platforms including 3D tumor spheroids, microfluidic platforms as well as bioprinted models, and discuss how they have been utilized to address major challenges in the process of drug discovery, such as chemoresistance, intratumor heterogeneity, drug toxicity, etc. We also present the potential of these platform technologies for use in high-throughput drug screening approaches as a replacements of conventional assays. Within each section, we will provide our perspectives on advantages of the discussed platform technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Arellano, J. A., T. A. Howell, J. Gammon, S. Cho, M. M. Janat-Amsbury, and B. Gale. Use of a highly parallel microfluidic flow cell array to determine therapeutic drug dose response curves. Biomed. Microdevices 2017. https://doi.org/10.1007/s10544-017-0166-3.

    Article  PubMed  Google Scholar 

  2. Ayuso, J. M., R. Monge, A. Martinez-Gonzalez, M. Virumbrales-Munoz, G. A. Llamazares, J. Berganzo, A. Hernandez-Lain, J. Santolaria, M. Doblare, C. Hubert, J. N. Rich, P. Sanchez-Gomez, V. M. Perez-Garcia, I. Ochoa, and L. J. Fernandez. Glioblastoma on a microfluidic chip: generating pseudopalisades and enhancing aggressiveness through blood vessel obstruction events. Neuro Oncol. 19(4):503–513, 2017. https://doi.org/10.1093/neuonc/now230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baghban, R., L. Roshangar, R. Jahanban-Esfahlan, K. Seidi, A. Ebrahimi-Kalan, M. Jaymand, S. Kolahian, T. Javaheri, and P. Zare. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 18(1):59, 2020. https://doi.org/10.1186/s12964-020-0530-4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Balkwill, F. R., M. Capasso, and T. Hagemann. The Tumor Microenvironment at a Glance. Cambridge: The Company of Biologists Ltd, 2012.

    Book  Google Scholar 

  5. Benam, K. H., S. Dauth, B. Hassell, A. Herland, A. Jain, K.-J. Jang, K. Karalis, H. J. Kim, L. MacQueen, R. Mahmoodian, S. Musah, Y.-S. Torisawa, A. D. van der Meer, R. Villenave, M. Yadid, K. K. Parker, and D. E. Ingber. Engineered in vitro disease models. Annu. Rev. Pathol. Mech. Dis. 10:195–262, 2015.

    Article  CAS  Google Scholar 

  6. Benet, L. Z., and P. Zia-Amirhosseini. Basic principles of pharmacokinetics. Toxicol. Pathol. 23(2):115–123, 1995.

    Article  CAS  PubMed  Google Scholar 

  7. Bhatia, S. N., M. L. Yarmush, and M. Toner. Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J. Biomed. Mater. Res. 34(2):189–199, 1997.

    Article  CAS  PubMed  Google Scholar 

  8. Bi, Y., V. S. Shirure, R. Liu, C. Cunningham, L. Ding, M. Meacham, P. Goedegebuure, S. C. George, and R. C. Fields. Tumor-on-a-chip platform to interrogate the role of macrophages in tumor progression. bioRxiv. 2020. https://doi.org/10.1101/2020.05.27.119636v1.abstract.

    Article  Google Scholar 

  9. Boehm, T., J. Folkman, T. Browder, and M. S. O’Reilly. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390(6658):404–407, 1997. https://doi.org/10.1038/37126.

    Article  CAS  PubMed  Google Scholar 

  10. Bonnans, C., J. Chou, and Z. Werb. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15(12):786–801, 2014. https://doi.org/10.1038/nrm3904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bordeleau, F., L. N. Tang, and C. A. Reinhart-King. Topographical guidance of 3D tumor cell migration at an interface of collagen densities. Phys. Biol. 10(6):065004, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bussard, K. M., C. V. Gay, and A. M. Mastro. The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev. 27(1):41–55, 2008.

    Article  PubMed  Google Scholar 

  13. Casey, A., M. Gargotti, F. Bonnier, and H. J. Byrne. Chemotherapeutic efficiency of drugs in vitro: comparison of doxorubicin exposure in 3D and 2D culture matrices. Toxicol. Vitro 33:99–104, 2016. https://doi.org/10.1016/j.tiv.2016.02.022.

    Article  CAS  Google Scholar 

  14. Chaudhuri, P. K., C. Q. Pan, B. C. Low, and C. T. Lim. Topography induces differential sensitivity on cancer cell proliferation via Rho-ROCK-Myosin contractility. Sci. Rep. 6:19672, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, Y., D. Gao, H. Liu, S. Lin, and Y. Jiang. Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening. Anal. Chim. Acta 898:85–92, 2015.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, J.-S., and J.-H. Jiang. Droplet microfluidic technique: microdroplets formation and manipulation. Chin. J. Anal. Chem. 8:60567, 2012.

    Google Scholar 

  17. Chen, M. B., J. A. Whisler, J. S. Jeon, and R. D. Kamm. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr. Biol. 5(10):1262–1271, 2013. https://doi.org/10.1039/c3ib40149a.

    Article  CAS  Google Scholar 

  18. Chi, C. W., Y. H. Lao, A. R. Ahmed, E. C. Benoy, C. Li, Z. Dereli-Korkut, B. M. Fu, K. W. Leong, and S. Wang. High-throughput tumor-on-a-chip platform to study tumor-stroma interactions and drug pharmacokinetics. Adv. Healthc. Mater. 9(21):2000880, 2020.

    Article  CAS  Google Scholar 

  19. Choi, Y., E. Hyun, J. Seo, C. Blundell, H. C. Kim, E. Lee, S. H. Lee, A. Moon, W. K. Moon, and D. Huh. A microengineered pathophysiological model of early-stage breast cancer. Lab Chip 15(16):3350–3357, 2015. https://doi.org/10.1039/c5lc00514k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clark, A., S. Wheeler, C. Young, L. Stockdale, J. S. Neiman, W. Zhao, D. Stolz, R. Venkataramanan, D. Lauffenburger, and L. Griffith. A liver microphysiological system of tumor cell dormancy and inflammatory responsiveness is affected by scaffold properties. Lab Chip 17(1):156–168, 2017.

    Article  CAS  Google Scholar 

  21. Colditz, G. A., and K. Bohlke. Priorities for the primary prevention of breast cancer. CA: Cancer J. Clin. 64(3):186–194, 2014.

    Google Scholar 

  22. Dadgar, N., A. M. Gonzalez-Suarez, P. Fattahi, X. Hou, J. S. Weroha, A. Gaspar-Maia, G. Stybayeva, and A. Rezvin. A microfluidic platform for cultivating ovarian cancer spheroids and testing their responses to chemotherapies. Microsyst. Nanoeng. 6:93, 2020. https://doi.org/10.1038/s41378-020-00201-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. D’Arcangelo, E., and A. P. McGuigan. Micropatterning strategies to engineer controlled cell and tissue architecture in vitro. Biotechniques 58(1):13–23, 2015.

    Article  PubMed  Google Scholar 

  24. Das, T., L. Meunier, L. Barbe, D. Provencher, O. Guenat, T. Gervais, and A.-M. Mes-Masson. Empirical chemosensitivity testing in a spheroid model of ovarian cancer using a microfluidics-based multiplex platform. Biomicrofluidics 2013. https://doi.org/10.1063/1.4774309.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dhiman, N., P. Kingshott, H. Sumer, C. S. Sharma, and S. N. Rath. On-chip anticancer drug screening–recent progress in microfluidic platforms to address challenges in chemotherapy. Biosens. Bioelectron. 137:236–254, 2019.

    Article  CAS  PubMed  Google Scholar 

  26. DiMasi, J. A., J. M. Reichert, L. Feldman, and A. Malins. Clinical approval success rates for investigational cancer drugs. Clin. Pharmacol. Ther. 94(3):329–335, 2013.

    Article  CAS  PubMed  Google Scholar 

  27. Ding, Y., J. Li, W. Xiao, K. Xiao, J. Lee, U. Bhardwaj, Z. Zhu, P. Digiglio, G. Yang, K. S. Lam, and T. Pan. Microfluidic-enabled print-to-screen platform for high-throughput screening of combinatorial chemotherapy. Anal. Chem. 2015. https://doi.org/10.1021/acs.analchem.5b00826.

    Article  PubMed  Google Scholar 

  28. Ediriweera, M. K., K. H. Tennekoon, and S. R. Samarakoon. In vitro assays and techniques utilized in anticancer drug discovery. J. Appl. Toxicol. 39(1):38–71, 2019. https://doi.org/10.1002/jat.3658.

    Article  CAS  PubMed  Google Scholar 

  29. Eduati, F., R. Utharala, D. Madhavan, U. P. Neumann, T. Longerich, T. Cramer, J. Saez-Rodriguez, and C. A. Merten. A microfluidics platform for combinatorial drug screening on cancer biopsies. Nat. Commun. 9(1):1–13, 2018.

    Article  CAS  Google Scholar 

  30. Ehsan, S. M., K. M. Welch-Reardon, M. L. Waterman, C. C. W. Hughes, and S. C. George. A three-dimensional in vitro model of tumor cell intravasation. Integr. Biol. 6(6):603–610, 2014. https://doi.org/10.1039/c3ib40170g.

    Article  CAS  Google Scholar 

  31. Fan, Y., D. T. Nguyen, Y. Akay, F. Xu, and M. Akay. Engineering a brain cancer chip for high-throughput drug screening. Sci. Rep. 6:25062, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng, J., J. Cen, J. Li, R. Zhao, C. Zhu, Z. Wang, J. Xie, and W. Tang. Histone deacetylase inhibitor valproic acid (VPA) promotes the epithelial mesenchymal transition of colorectal cancer cells via up regulation of Snail. Cell Adhes. Migr. 9(6):495–501, 2015.

    Article  CAS  Google Scholar 

  33. Feng, Y., M. Spezia, S. Huang, C. Yuan, Z. Zeng, L. Zhang, X. Ji, W. Liu, B. Huang, W. Luo, B. Liu, Y. Lei, S. Du, A. Vuppalapati, H. H. Luu, R. C. Haydon, T. C. He, and G. Ren. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 5(2):77–106, 2018. https://doi.org/10.1016/j.gendis.2018.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Friberg, S., and A. Nystrom. Cancer metastases: early dissemination and late recurrences. Cancer Growth Metastasis 2015. https://doi.org/10.4137/CGM.S31244.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fu, N., G. J. Lindeman, and J. E. Visvader. The mammary stem cell hierarchy. Curr. Top. Dev. Biol. 107:133–160, 2014. https://doi.org/10.1016/b978-0-12-416022-4.00005-6.

    Article  CAS  PubMed  Google Scholar 

  36. Gál, P., L. Varinská, L. Fáber, Š. Novák, P. Szabo, P. Mitrengová, A. Mirossay, P. Mučaji, and K. Smetana. How signaling molecules regulate tumor microenvironment: parallels to wound repair. Molecules 22(11):1818, 2017.

    Article  PubMed Central  CAS  Google Scholar 

  37. Gross, B. C., J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence. Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences. Washington, DC: ACS Publications, 2014.

    Book  Google Scholar 

  38. Guillemot, F., A. Souquet, S. Catros, B. Guillotin, J. Lopez, M. Faucon, B. Pippenger, R. Bareille, M. Rémy, and S. Bellance. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 6(7):2494–2500, 2010.

    Article  CAS  PubMed  Google Scholar 

  39. Haase, K., G. S. Offeddu, M. R. Gillrie, and R. D. Kamm. Endothelial regulation of drug transport in a 3D vascularized tumor model. Adv. Funct. Mater. 2020. https://doi.org/10.1002/adfm.202002444.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Haessler, U., Y. Kalinin, M. A. Swartz, and M. Wu. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed. Microdevices 11(4):827–835, 2009. https://doi.org/10.1007/s10544-009-9299-3; (PubMed PMID: 19343497).

    Article  CAS  PubMed  Google Scholar 

  41. Hait, W. N. Anticancer drug development: the grand challenges. Nat. Rev. Drug Discov. 9(4):253–254, 2010. https://doi.org/10.1038/nrd3144.

    Article  CAS  PubMed  Google Scholar 

  42. Han, J., Y. Jun, S. H. Kim, H.-H. Hoang, Y. Jung, S. Kim, J. Kim, R. H. Austin, S. Lee, and S. Park. Rapid emergence and mechanisms of resistance by U87 glioblastoma cells to doxorubicin in an in vitro tumor microfluidic ecology. Proc. Natl. Acad. Sci. 113(50):14283–14288, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hanahan, D., and R. A. Weinberg. Hallmarks of cancer: the next generation. Cell 144(5):646–674, 2011.

    Article  CAS  PubMed  Google Scholar 

  44. Hansen, K., and C. Khanna. Spontaneous and genetically engineered animal models: use in preclinical cancer drug development. Eur. J. Cancer 40(6):858–880, 2004. https://doi.org/10.1016/j.ejca.2003.11.031.

    Article  CAS  PubMed  Google Scholar 

  45. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Imamura, Y., T. Mukohara, Y. Shimono, Y. Funakoshi, N. Chayahara, M. Toyoda, N. Kiyota, S. Takao, S. Kono, and T. Nakatsura. Comparison of 2D-and 3D-culture models as drug-testing platforms in breast cancer. Oncol. Rep. 33(4):1837–1843, 2015.

    Article  CAS  PubMed  Google Scholar 

  47. Jeon, J. S., S. Bersini, M. Gilardi, G. Dubini, J. L. Charest, M. Moretti, and R. D. Kamm. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl. Acad. Sci. 112(1):214–219, 2015.

    Article  CAS  PubMed  Google Scholar 

  48. Jeon, J. S., I. K. Zervantonakis, S. Chung, R. D. Kamm, and J. L. Charest. In vitro model of tumor cell extravasation. PLoS ONE 2013. https://doi.org/10.1371/journal.pone.0056910.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jeong, S. Y., J. H. Lee, Y. Shin, S. Chung, and H. J. Kuh. Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLoS ONE 11(7):e0159013, 2016. https://doi.org/10.1371/journal.pone.0159013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jo, Y., N. Choi, K. Kim, H. J. Koo, J. Choi, and H. N. Kim. Chemoresistance of cancer cells: requirements of tumor microenvironment-mimicking in vitro models in anti-cancer drug development. Theranostics 8(19):5259–5275, 2018. https://doi.org/10.7150/thno.29098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Junttila, M. R., and F. J. de Sauvage. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501(7467):346–354, 2013. https://doi.org/10.1038/nature12626.

    Article  CAS  PubMed  Google Scholar 

  52. Kalchman, J., S. Fujioka, S. Chung, Y. Kikkawa, T. Mitaka, R. D. Kamm, K. Tanishita, and R. Sudo. A three-dimensional microfluidic tumor cell migration assay to screen the effect of anti-migratory drugs and interstitial flow. Microfluid. Nanofluid. 14(6):969–981, 2013.

    Article  CAS  Google Scholar 

  53. Kalluri, R., and M. Zeisberg. Fibroblasts in cancer. Nat. Rev. Cancer 6(5):392–401, 2006.

    Article  CAS  PubMed  Google Scholar 

  54. Kang, D.-K., M. M. Ali, K. Zhang, E. J. Pone, and W. Zhao. Droplet microfluidics for single-molecule and single-cell analysis in cancer research, diagnosis and therapy. TrAC Trends Anal. Chem. 58:145–153, 2014.

    Article  CAS  Google Scholar 

  55. Katt, M. E., A. L. Placone, A. D. Wong, Z. S. Xu, and P. C. Searson. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front. Bioeng. Biotechnol. 2016. https://doi.org/10.3389/fbioe.2016.00012.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kenny, P. A., G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol. Oncol. 1(1):84–96, 2007. https://doi.org/10.1016/j.molonc.2007.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khamis, Z. I., Z. J. Sahab, and Q. X. Sang. Active roles of tumor stroma in breast cancer metastasis. Int. J. Breast Cancer 2012:574025, 2012. https://doi.org/10.1155/2012/574025.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Khan, I. U., C. A. Serra, N. Anton, and T. Vandamme. Microfluidics: a focus on improved cancer targeted drug delivery systems. J. Control. Release 172(3):1065–1074, 2013.

    Article  CAS  PubMed  Google Scholar 

  59. Khetani, S. R., and S. N. Bhatia. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 26(1):120–126, 2008.

    Article  CAS  PubMed  Google Scholar 

  60. Kim, C., J. H. Bang, Y. E. Kim, S. H. Lee, and J. Y. Kang. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Lab Chip 12(20):4135–4142, 2012. https://doi.org/10.1039/c2lc40570a.

    Article  CAS  PubMed  Google Scholar 

  61. Kim, B. J., P. Hannanta-anan, M. Chau, Y. S. Kim, M. A. Swartz, and M. Wu. Cooperative roles of SDF-1alpha and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model. PLoS ONE 8(7):e68422, 2013. https://doi.org/10.1371/journal.pone.0068422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim, K. T., H. W. Lee, H. O. Lee, S. C. Kim, Y. J. Seo, W. Chung, H. H. Eum, D. H. Nam, J. Kim, K. M. Joo, and W. Y. Park. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol. 16:127, 2015. https://doi.org/10.1186/s13059-015-0692-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, S. E., H. Y. Paik, H. Yoon, J. E. Lee, N. Kim, and M.-K. Sung. Sex- and gender-specific disparities in colorectal cancer risk. World J. Gastroenterol. 21(17):5167–5175, 2015. https://doi.org/10.3748/wjg.v21.i17.5167.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kingsley, D. M., C. L. Roberge, A. Rudkouskaya, D. E. Faulkner, M. Barroso, X. Intes, and D. T. Corr. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. Acta Biomater. 95:357–370, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kitaeva, K. V., C. S. Rutland, A. A. Rizvanov, and V. V. Solovyeva. Cell culture based in vitro test systems for anticancer drug screening. Front. Bioeng. Biotechnol. 8:322, 2020. https://doi.org/10.3389/fbioe.2020.00322.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kiyuna, T., T. Murakami, Y. Tome, K. Igarashi, K. Kawaguchi, T. Russell, M. A. Eckardt, J. Crompton, A. Singh, N. Bernthal, S. Bukata, N. Federman, F. Kanaya, F. C. Eilber, and R. M. Hoffman. Labeling the stroma of a patient-derived orthotopic xenograft (PDOX) mouse model of undifferentiated pleomorphic soft-tissue sarcoma with red fluorescent protein for rapid non-invasive imaging for drug screening. J. Cell Biochem. 118(2):361–365, 2017. https://doi.org/10.1002/jcb.25643.

    Article  CAS  PubMed  Google Scholar 

  67. Ko, J., J. Ahn, S. Kim, Y. Lee, J. Lee, D. Park, and N. L. Jeon. Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis. Lab Chip 19(17):2822–2833, 2019. https://doi.org/10.1039/c9lc00140a.

    Article  CAS  PubMed  Google Scholar 

  68. Kochanek, K. D., S. L. Murphy, J. Xu, E. Arias. Deaths: final data for 20172019.

  69. Kraning-Rush, C. M., and C. A. Reinhart-King. Controlling matrix stiffness and topography for the study of tumor cell migration. Cell Adhes. Migr. 6(3):274–279, 2012.

    Article  Google Scholar 

  70. Lampreht Tratar, U., S. Horvat, and M. Cemazar. Transgenic mouse models in cancer research. Front Oncol. 8:268, 2018. https://doi.org/10.3389/fonc.2018.00268.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lee, G. Y., P. A. Kenny, E. H. Lee, and M. J. Bissell. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4(4):359–365, 2007. https://doi.org/10.1038/nmeth1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee, J.-H., S.-K. Kim, I. A. Khawar, S.-Y. Jeong, S. Chung, and H.-J. Kuh. Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance. J. Exp. Clin. Cancer Res. 37(1):4, 2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lee, S. W., H. S. Kwak, M. H. Kang, Y. Y. Park, and G. S. Jeong. Fibroblast-associated tumour microenvironment induces vascular structure-networked tumouroid. Sci. Rep. 8(1):2365, 2018. https://doi.org/10.1038/s41598-018-20886-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lei, K. F., T.-K. Liu, and N.-M. Tsang. Towards a high throughput impedimetric screening of chemosensitivity of cancer cells suspended in hydrogel and cultured in a paper substrate. Biosens. Bioelectron. 100:355–360, 2018.

    Article  CAS  PubMed  Google Scholar 

  75. Leung, C. S., T. L. Yeung, K. P. Yip, K. K. Wong, S. Y. Ho, L. S. Mangala, A. K. Sood, G. Lopez-Berestein, J. Sheng, S. T. Wong, M. J. Birrer, and S. C. Mok. Cancer-associated fibroblasts regulate endothelial adhesion protein LPP to promote ovarian cancer chemoresistance. J. Clin. Investig. 128(2):589–606, 2018. https://doi.org/10.1172/jci95200.

    Article  PubMed  Google Scholar 

  76. Levental, K. R., H. Yu, L. Kass, J. N. Lakins, M. Egeblad, J. T. Erler, S. F. Fong, K. Csiszar, A. Giaccia, and W. Weninger. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liang, F., C. Ren, J. Wang, S. Wang, L. Yang, X. Han, Y. Chen, G. Tong, and G. Yang. The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy. Oncogenesis 8(10):59, 2019. https://doi.org/10.1038/s41389-019-0165-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lin, D., P. Li, J. Lin, B. Shu, W. Wang, Q. Zhang, N. Yang, D. Liu, and B. Xu. Orthogonal screening of anticancer drugs using an open-access microfluidic tissue array system. Anal. Chem. 89(22):11976–11984, 2017.

    Article  CAS  PubMed  Google Scholar 

  79. Liu, W., M. Sun, B. Lu, M. Yan, K. Han, and J. Wang. A microfluidic platform for multi-size 3D tumor culture, monitoring and drug resistance testing. Sens. Actuators B: Chem. 292:111–120, 2019.

    Article  CAS  Google Scholar 

  80. Liu, J., Y. Tan, H. Zhang, Y. Zhang, P. Xu, J. Chen, Y. C. Poh, K. Tang, N. Wang, and B. Huang. Soft fibrin gels promote selection and growth of tumorigenic cells. Nat. Mater. 11(8):734–741, 2012. https://doi.org/10.1038/nmat3361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, W., J. Xu, T. Li, L. Zhao, C. Ma, S. Shen, and J. Wang. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform. Anal. Chem. 87(19):9752–9760, 2015.

    Article  CAS  PubMed  Google Scholar 

  82. Liu, T., L. Zhou, D. Li, T. Andl, and Y. Zhang. Cancer-associated fibroblasts build and secure the tumor microenvironment. Front. Cell Dev. Biol. 7:60, 2019. https://doi.org/10.3389/fcell.2019.00060.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Loeffler, M., J. A. Kruger, A. G. Niethammer, and R. A. Reisfeld. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J. Clin. Investig. 116(7):1955–1962, 2006. https://doi.org/10.1172/JCI26532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lu, P., V. M. Weaver, and Z. Werb. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196(4):395–406, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Madden, E. C., A. M. Gorman, S. E. Logue, and A. Samali. Tumour cell secretome in chemoresistance and tumour recurrence. Trends Cancer 6(6):489–505, 2020. https://doi.org/10.1016/j.trecan.2020.02.020.

    Article  CAS  PubMed  Google Scholar 

  86. Mak, I. W. Y., N. Evaniew, and M. Ghert. Lost in translation: animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 6(2):114–118, 2014.

    PubMed  PubMed Central  Google Scholar 

  87. Mariotto, A. B., K. Robin Yabroff, Y. Shao, E. J. Feuer, and M. L. Brown. Projections of the cost of cancer care in the United States: 2010–2020. JNCI 103(2):117–128, 2011. https://doi.org/10.1093/jnci/djq495.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Marsden, C. G., M. J. Wright, L. Carrier, K. Moroz, R. Pochampally, and B. G. Rowan. A novel in vivo model for the study of human breast cancer metastasis using primary breast tumor-initiating cells from patient biopsies. BMC Cancer 2012. https://doi.org/10.1186/1471-2407-12-10.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Martin, K. J., D. R. Patrick, M. J. Bissell, and M. V. Fournier. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets. PLoS ONE 3(8):e2994, 2008. https://doi.org/10.1371/journal.pone.0002994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mbeunkui, F., and D. J. Johann. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother. Pharmacol. 63(4):571–582, 2009.

    Article  PubMed  Google Scholar 

  91. Meegan, M. J., and N. M. O’Boyle. Special issue, “Anticancer Drugs”. Pharmaceuticals 2019. https://doi.org/10.3390/ph12030134.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mehta, G., A. Y. Hsiao, M. Ingram, G. D. Luker, and S. Takayama. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J. Control Release 164(2):192–204, 2012. https://doi.org/10.1016/j.jconrel.2012.04.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Melzer, C., Y. Yang, and R. Hass. Interaction of MSC with tumor cells. Cell Commun. Signal. 14(1):20, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Memic, A., A. Navaei, B. Mirani, J. A. V. Cordova, M. Aldhahri, A. Dolatshahi-Pirouz, M. Akbari, and M. Nikkhah. Bioprinting technologies for disease modeling. Biotechnol. Lett. 39(9):1279–1290, 2017. https://doi.org/10.1007/s10529-017-2360-z.

    Article  CAS  PubMed  Google Scholar 

  95. Mi, S., Z. Du, Y. Xu, Z. Wu, X. Qian, M. Zhang, and W. Sun. Microfluidic co-culture system for cancer migratory analysis and anti-metastatic drugs screening. Sci. Rep. 6:35544, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Montanez-Sauri, S. I., K. E. Sung, E. Berthier, and D. J. Beebe. Enabling screening in 3D microenvironments: probing matrix and stromal effects on the morphology and proliferation of T47D breast carcinoma cells. Integr. Biol. 5(3):631–640, 2013. https://doi.org/10.1039/c3ib20225a.

    Article  CAS  Google Scholar 

  97. Mudunuru, J., C. Ren, D. R. Taft, and M. Maniar. Effect of gender on the pharmacokinetics of ON 123300, a dual inhibitor of ARK5 and CDK4/6 for the treatment of cancer, in rats. Eur. J. Drug Metab. Pharmacokinet. 44(4):531–538, 2019. https://doi.org/10.1007/s13318-019-00542-2.

    Article  CAS  PubMed  Google Scholar 

  98. Nagaraju, S., D. Truong, G. Mouneimne, and M. Nikkhah. Microfluidic tumor-vascular model to study breast cancer cell invasion and intravasation. Adv. Healthc. Mater. 7(9):e1701257, 2018. https://doi.org/10.1002/adhm.201701257.

    Article  CAS  PubMed  Google Scholar 

  99. Nassar, D., and C. Blanpain. Cancer stem cells: basic concepts and therapeutic implications. Annu. Rev. Pathol. 11:47–76, 2016. https://doi.org/10.1146/annurev-pathol-012615-044438.

    Article  CAS  PubMed  Google Scholar 

  100. Nath, S., and G. R. Devi. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol. Ther. 163:94–108, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Navaei, A., N. Moore, R. T. Sullivan, D. Truong, R. Q. Migrino, and M. Nikkhah. Electrically conductive hydrogel-based micro-topographies for the development of organized cardiac tissues. RSC Adv. 7(6):3302–3312, 2017.

    Article  CAS  Google Scholar 

  102. Nguyen, M., A. De Ninno, A. Mencattini, F. Mermet-Meillon, G. Fornabaio, S. S. Evans, M. Cossutta, Y. Khira, W. Han, and P. Sirven. Dissecting effects of anti-cancer drugs and cancer-associated fibroblasts by on-chip reconstitution of immunocompetent tumor microenvironments. Cell Rep. 25(13):3884–3893, 2018.

    Article  CAS  PubMed  Google Scholar 

  103. Nikkhah, M., F. Edalat, S. Manoucheri, and A. Khademhosseini. Engineering microscale topographies to control the cell-substrate interface. Biomaterials 33(21):5230–5246, 2012. https://doi.org/10.1016/j.biomaterials.2012.03.079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nikkhah, M., N. Eshak, P. Zorlutuna, N. Annabi, M. Castello, K. Kim, A. Dolatshahi-Pirouz, F. Edalat, H. Bae, Y. Yang, and A. Khademhosseini. Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials 33(35):9009–9018, 2012. https://doi.org/10.1016/j.biomaterials.2012.08.068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nikkhah, M., J. S. Strobl, and M. Agah. Attachment and response of human fibroblast and breast cancer cells to three dimensional silicon microstructures of different geometries. Biomed. Microdevices 11(2):429, 2009.

    Article  CAS  PubMed  Google Scholar 

  106. Nikkhah, M., J. S. Strobl, R. De Vita, and M. Agah. The cytoskeletal organization of breast carcinoma and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures. Biomaterials 31(16):4552–4561, 2010.

    Article  CAS  PubMed  Google Scholar 

  107. Nikkhah, M., J. S. Strobl, B. Peddi, and M. Agah. Cytoskeletal role in differential adhesion patterns of normal fibroblasts and breast cancer cells inside silicon microenvironments. Biomed. Microdevices 11(3):585, 2009.

    Article  CAS  PubMed  Google Scholar 

  108. Nikkhah, M., J. S. Strobl, E. M. Schmelz, P. C. Roberts, H. Zhou, and M. Agah. MCF10A and MDA-MB-231 human breast basal epithelial cell co-culture in silicon micro-arrays. Biomaterials 32(30):7625–7632, 2011. https://doi.org/10.1016/j.biomaterials.2011.06.041.

    Article  CAS  PubMed  Google Scholar 

  109. Nikkhah, M., J. S. Strobl, V. Srinivasaraghavan, and M. Agah. Isotropically etched silicon microarrays for rapid breast cancer cell capture. IEEE Sens. J. 13(3):1125–1132, 2012.

    Article  CAS  Google Scholar 

  110. Niu, X., F. Gielen, J. B. Edel, and A. J. Demello. A microdroplet dilutor for high-throughput screening. Nat. Chem. 3(6):437, 2011.

    Article  CAS  PubMed  Google Scholar 

  111. Nyga, A., U. Cheema, and M. Loizidou. 3D tumour models: novel in vitro approaches to cancer studies. J. Cell Commun. Signal. 5(3):239, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ozcelikkale, A., K. Shin, V. Noe-Kim, B. D. Elzey, Z. Dong, J. T. Zhang, K. Kim, I. C. Kwon, K. Park, and B. Han. Differential response to doxorubicin in breast cancer subtypes simulated by a microfluidic tumor model. J. Control. Release 266:129–139, 2017. https://doi.org/10.1016/j.jconrel.2017.09.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pasquier, J., M. Gosset, C. Geyl, J. Hoarau-Vechot, A. Chevrot, M. Pocard, M. Mirshahi, R. Lis, A. Rafii, and C. Touboul. CCL2/CCL5 secreted by the stroma induce IL-6/PYK2 dependent chemoresistance in ovarian cancer. Mol. Cancer 17(1):47, 2018. https://doi.org/10.1186/s12943-018-0787-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Patch, A. M., E. L. Christie, D. Etemadmoghadam, D. W. Garsed, J. George, S. Fereday, K. Nones, P. Cowin, K. Alsop, P. J. Bailey, K. S. Kassahn, F. Newell, M. C. Quinn, S. Kazakoff, K. Quek, C. Wilhelm-Benartzi, E. Curry, H. S. Leong, Australian Ovarian Cancer Study G, A. Hamilton, L. Mileshkin, G. Au-Yeung, C. Kennedy, J. Hung, Y. E. Chiew, P. Harnett, M. Friedlander, M. Quinn, J. Pyman, S. Cordner, P. O’Brien, J. Leditschke, G. Young, K. Strachan, P. Waring, W. Azar, C. Mitchell, N. Traficante, J. Hendley, H. Thorne, M. Shackleton, D. K. Miller, G. M. Arnau, R. W. Tothill, T. P. Holloway, T. Semple, I. Harliwong, C. Nourse, E. Nourbakhsh, S. Manning, S. Idrisoglu, T. J. Bruxner, A. N. Christ, B. Poudel, O. Holmes, M. Anderson, C. Leonard, A. Lonie, N. Hall, S. Wood, D. F. Taylor, Q. Xu, J. L. Fink, N. Waddell, R. Drapkin, E. Stronach, H. Gabra, R. Brown, A. Jewell, S. H. Nagaraj, E. Markham, P. J. Wilson, J. Ellul, O. McNally, M. A. Doyle, R. Vedururu, C. Stewart, E. Lengyel, J. V. Pearson, N. Waddell, A. deFazio, S. M. Grimmond, and D. D. Bowtell. Whole-genome characterization of chemoresistant ovarian cancer. Nature 521(7553):489–494, 2015. https://doi.org/10.1038/nature14410.

    Article  CAS  PubMed  Google Scholar 

  115. Peela, N., E. S. Barrientos, D. Truong, G. Mouneimne, and M. Nikkhah. Effect of suberoylanilide hydroxamic acid (SAHA) on breast cancer cells within a tumor-stroma microfluidic model. Integr. Biol. 9(12):988–999, 2017. https://doi.org/10.1039/c7ib00180k.

    Article  CAS  Google Scholar 

  116. Peela, N., F. S. Sam, W. Christenson, D. Truong, A. W. Watson, G. Mouneimne, R. Ros, and M. Nikkhah. A three dimensional micropatterned tumor model for breast cancer cell migration studies. Biomaterials 81:72–83, 2016. https://doi.org/10.1016/j.biomaterials.2015.11.039.

    Article  CAS  PubMed  Google Scholar 

  117. Peela, N., D. Truong, H. Saini, H. Chu, S. Mashaghi, S. L. Ham, S. Singh, H. Tavana, B. Mosadegh, and M. Nikkhah. Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis. Biomaterials 133:176–207, 2017. https://doi.org/10.1016/j.biomaterials.2017.04.017.

    Article  CAS  PubMed  Google Scholar 

  118. Place, A. E., S. J. Huh, and K. Polyak. The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Res. 2011. https://doi.org/10.1186/bcr2912.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Plava, J., M. Cihova, M. Burikova, M. Matuskova, L. Kucerova, and S. Miklikova. Recent advances in understanding tumor stroma-mediated chemoresistance in breast cancer. Mol. Cancer 18(1):67, 2019. https://doi.org/10.1186/s12943-019-0960-z.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Polyak, K., and W. C. Hahn. Roots and stems: stem cells in cancer. Nat. Med. 12(3):296–300, 2006. https://doi.org/10.1038/nm1379.

    Article  CAS  PubMed  Google Scholar 

  121. Popova, A. A., T. Tronser, K. Demir, P. Haitz, K. Kuodyte, V. Starkuviene, P. Wajda, and P. A. Levkin. Facile one step formation and screening of tumor spheroids using droplet-microarray platform. Small 15(25):1901299, 2019.

    Article  CAS  Google Scholar 

  122. Rianna, C., and M. Radmacher. Influence of microenvironment topography and stiffness on the mechanics and motility of normal and cancer renal cells. Nanoscale 9(31):11222–11230, 2017.

    Article  CAS  PubMed  Google Scholar 

  123. Richmond, A., and Y. Su. Mouse xenograft models vs GEM models for human cancer therapeutics. Dis. Models Mech. 1(2–3):78–82, 2008. https://doi.org/10.1242/dmm.000976.

    Article  Google Scholar 

  124. Ridge, S. M., F. J. Sullivan, and S. A. Glynn. Mesenchymal stem cells: key players in cancer progression. Mol. Cancer 16(1):31, 2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Riedl, A., M. Schlederer, K. Pudelko, M. Stadler, S. Walter, D. Unterleuthner, C. Unger, N. Kramer, M. Hengstschläger, and L. Kenner. Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT–mTOR–S6K signaling and drug responses. J Cell Sci. 130(1):203–218, 2017.

    CAS  PubMed  Google Scholar 

  126. Rosa, R., F. Monteleone, N. Zambrano, and R. Bianco. In vitro and in vivo models for analysis of resistance to anticancer molecular therapies. Curr. Med. Chem. 21(14):1595–1606, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sabhachandani, P., V. Motwani, N. Cohen, S. Sarkar, V. Torchilin, and T. Konry. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Lab Chip 16(3):497–505, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sabhachandani, P., S. Sarkar, S. Mckenney, D. Ravi, A. M. Evens, and T. Konry. Microfluidic assembly of hydrogel-based immunogenic tumor spheroids for evaluation of anticancer therapies and biomarker release. J. Control. Release 295:21–30, 2019.

    Article  CAS  PubMed  Google Scholar 

  129. Sackmann, E. K., A. L. Fulton, and D. J. Beebe. The present and future role of microfluidics in biomedical research. Nature 507(7491):181–189, 2014.

    Article  CAS  PubMed  Google Scholar 

  130. Saini, H., K. Rahmani Eliato, C. Silva, M. Allam, G. Mouneimne, R. Ros, and M. Nikkhah. The role of desmoplasia and stromal fibroblasts on anti-cancer drug resistance in a microengineered tumor model. Cell. Mol. Bioeng. 11(5):419–433, 2018. https://doi.org/10.1007/s12195-018-0544-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Saini, H., K. Rahmani Eliato, J. Veldhuizen, A. Zare, M. Allam, C. Silva, A. Kratz, D. Truong, G. Mouneimne, J. LaBaer, R. Ros, and M. Nikkhah. The role of tumor-stroma interactions on desmoplasia and tumorigenicity within a microengineered 3D platform. Biomaterials 247:119975, 2020. https://doi.org/10.1016/j.biomaterials.2020.119975.

    Article  CAS  PubMed  Google Scholar 

  132. Sarkar, S., N. Cohen, P. Sabhachandani, and T. Konry. Phenotypic drug profiling in droplet microfluidics for better targeting of drug-resistant tumors. Lab Chip 15(23):4441–4450, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Senthebane, D. A., A. Rowe, N. E. Thomford, H. Shipanga, D. Munro, M. A. Al Mazeedi, H. A. Almazyadi, K. Kallmeyer, C. Dandara, and M. S. Pepper. The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. Int. J. Mol. Sci. 18(7):1586, 2017.

    Article  PubMed Central  CAS  Google Scholar 

  134. Sharpless, N. E., and R. A. Depinho. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5(9):741–754, 2006. https://doi.org/10.1038/nrd2110.

    Article  CAS  PubMed  Google Scholar 

  135. Shen, K., S. Luk, D. F. Hicks, J. S. Elman, S. Bohr, Y. Iwamoto, R. Murray, K. Pena, F. Wang, E. Seker, R. Weissleder, M. L. Yarmush, M. Toner, D. Sgroi, and B. Parekkadan. Resolving cancer-stroma interfacial signalling and interventions with micropatterned tumour-stromal assays. Nat. Commun. 5:5662, 2014. https://doi.org/10.1038/ncomms6662.

    Article  CAS  PubMed  Google Scholar 

  136. Shin, K., B. S. Klosterhoff, and B. Han. Characterization of cell-type-specific drug transport and resistance of breast cancers using tumor-microenvironment-on-chip. Mol. Pharm. 13(7):2214–2223, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shirure, V. S., Y. Bi, M. B. Curtis, A. Lezia, M. M. Goedegebuure, S. P. Goedegebuure, R. Aft, R. C. Fields, and S. C. George. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab Chip 18(23):3687–3702, 2018.

    Article  CAS  PubMed  Google Scholar 

  138. Siegel, R. L., K. D. Miller, and A. Jemal. Cancer statistics, 2020. CA Cancer J. Clin. 70(1):7–30, 2020. https://doi.org/10.3322/caac.21590.

    Article  PubMed  Google Scholar 

  139. Strobl, J. S., M. Nikkhah, and M. Agah. Actions of the anti-cancer drug suberoylanilide hydroxamic acid (SAHA) on human breast cancer cytoarchitecture in silicon microstructures. Biomaterials 31(27):7043–7050, 2010. https://doi.org/10.1016/j.biomaterials.2010.05.023.

    Article  CAS  PubMed  Google Scholar 

  140. Sudhakar, A. History of cancer, ancient and modern treatment methods. J. Cancer Sci. Ther. 1(2):1–4, 2009.

    Article  PubMed  Google Scholar 

  141. Sun, J., W. Liu, Y. Li, A. Gholamipour-Shirazi, A. Abdulla, and X. Ding. An on-chip cell culturing and combinatorial drug screening system. Microfluid. Nanofluid. 21(7):125, 2017.

    Article  CAS  Google Scholar 

  142. Sung, K. E., and D. J. Beebe. Microfluidic 3D models of cancer. Adv. Drug Deliv. Rev. 79–80:68–78, 2014. https://doi.org/10.1016/j.addr.2014.07.002.

    Article  CAS  PubMed  Google Scholar 

  143. Sung, K. E., X. Su, E. Berthier, C. Pehlke, A. Friedl, and D. J. Beebe. Understanding the impact of 2D and 3D fibroblast cultures on in vitro breast cancer models. PLoS ONE 2013. https://doi.org/10.1371/journal.pone.0076373.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sung, K. E., N. Yang, C. Pehlke, P. J. Keely, K. W. Eliceiri, A. Friedl, and D. J. Beebe. Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr. Biol. 3(4):439–450, 2011. https://doi.org/10.1039/c0ib00063a.

    Article  CAS  Google Scholar 

  145. Szot, C. S., C. F. Buchanan, J. W. Freeman, and M. N. Rylander. 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials 32(31):7905–7912, 2011. https://doi.org/10.1016/j.biomaterials.2011.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Thakuri, P. S., M. Gupta, M. Plaster, and H. Tavana. Quantitative size-based analysis of tumor spheroids and responses to therapeutics. Assay Drug Dev. Technol. 17(3):140–149, 2019. https://doi.org/10.1089/adt.2018.895.

    Article  CAS  PubMed  Google Scholar 

  147. Théry, M. Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci. 123(24):4201–4213, 2010.

    Article  PubMed  CAS  Google Scholar 

  148. Truong, D., R. Fiorelli, E. S. Barrientos, E. L. Melendez, N. Sanai, S. Mehta, and M. Nikkhah. A three-dimensional (3D) organotypic microfluidic model for glioma stem cells—vascular interactions. Biomaterials 198:63–77, 2019. https://doi.org/10.1016/j.biomaterials.2018.07.048.

    Article  CAS  PubMed  Google Scholar 

  149. Truong, D. D., A. Kratz, J. G. Park, E. S. Barrientos, H. Saini, T. Nguyen, B. Pockaj, G. Mouneimne, J. LaBaer, and M. Nikkhah. A human organotypic microfluidic tumor model permits investigation of the interplay between patient-derived fibroblasts and breast cancer cells. Cancer Res. 79(12):3139–3151, 2019. https://doi.org/10.1158/0008-5472.can-18-2293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Truong, D., J. Puleo, A. Llave, G. Mouneimne, R. D. Kamm, and M. Nikkhah. Breast cancer cell invasion into a three dimensional tumor-stroma microenvironment. Sci. Rep. 6:34094, 2016. https://doi.org/10.1038/srep34094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tsai, M. J., W. A. Chang, M. S. Huang, and P. L. Kuo. Tumor microenvironment: a new treatment target for cancer. ISRN Biochem. 2014:351959, 2014. https://doi.org/10.1155/2014/351959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Valente, K. P., S. Khetani, A. R. Kolahchi, A. Sanati-Nezhad, A. Suleman, and M. Akbari. Microfluidic technologies for anticancer drug studies. Drug Discov. Today 22(11):1654–1670, 2017.

    Article  CAS  PubMed  Google Scholar 

  153. van den Brand, D., L. F. Massuger, R. Brock, and W. P. Verdurmen. Mimicking tumors: toward more predictive in vitro models for peptide-and protein-conjugated drugs. Bioconj. Chem. 28(3):846–856, 2017.

    Article  CAS  Google Scholar 

  154. Velaei, K., N. Samadi, B. Barazvan, and Rad J. Soleimani. Tumor microenvironment-mediated chemoresistance in breast cancer. Breast 30:92–100, 2016. https://doi.org/10.1016/j.breast.2016.09.002.

    Article  PubMed  Google Scholar 

  155. Veldhuizen, J., J. Cutts, D. Brafman, R. Migrino, and M. Nikkhah. Engineering anisotropic human stem cell-derived three-dimensional cardiac tissue on-a-chip. Biomaterials 256:120195, 2020. https://doi.org/10.1016/j.biomaterials.2020.120195.

    Article  CAS  PubMed  Google Scholar 

  156. Vidi, P. A., J. F. Leary, and S. A. Lelievre. Building risk-on-a-chip models to improve breast cancer risk assessment and prevention. Integr. Biol. 5(9):1110–1118, 2013. https://doi.org/10.1039/c3ib40053k.

    Article  CAS  Google Scholar 

  157. Wang, S., S. Mao, M. Li, H.-F. Li, and J.-M. Lin. Near-physiological microenvironment simulation on chip to evaluate drug resistance of different loci in tumour mass. Talanta 191:67–73, 2019.

    Article  CAS  PubMed  Google Scholar 

  158. Weaver, V. M., S. Lelièvre, J. N. Lakins, M. A. Chrenek, J. C. Jones, F. Giancotti, Z. Werb, and M. J. Bissell. β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2(3):205–216, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Weigelt, B., C. M. Ghajar, and M. J. Bissell. The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Adv. Drug Deliv. Rev. 69–70:42–51, 2014. https://doi.org/10.1016/j.addr.2014.01.001.

    Article  CAS  PubMed  Google Scholar 

  160. Weinberg, R. A., and R. A. Weinberg. The biology of cancer. New York: Garland Science, 2013.

    Book  Google Scholar 

  161. Weng, K.-C., Y. K. Kurokawa, B. S. Hajek, J. A. Paladin, V. S. Shirure, and S. C. George. Human induced pluripotent stem-cardiac-endothelial-tumor-on-a-chip to assess anticancer efficacy and cardiotoxicity. Tissue Eng. Part C: Methods 26(1):44–55, 2020.

    Article  CAS  Google Scholar 

  162. White, A., L. Ironmonger, R. Steele, N. Ormiston-Smith, C. Crawford, and A. Seims. A review of sex-related differences in colorectal cancer incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK. BMC Cancer 2018. https://doi.org/10.1186/s12885-018-4786-7.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Witkiewicz, A. K., U. Balaji, C. Eslinger, E. McMillan, W. Conway, B. Posner, G. B. Mills, E. M. O’Reilly, and E. S. Knudsen. Integrated patient-derived models delineate individualized therapeutic vulnerabilities of pancreatic cancer. Cell Rep. 16(7):2017–2031, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wu, S., Z. Luo, P.-J. Yu, H. Xie, and Y.-W. He. Suberoylanilide hydroxamic acid (SAHA) promotes the epithelial mesenchymal transition of triple negative breast cancer cells via HDAC8/FOXA1 signals. Biol. Chem. 397(1):75–83, 2016.

    Article  CAS  PubMed  Google Scholar 

  165. Xie, M., Q. Gao, J. Fu, Z. Chen, and Y. He. Bioprinting of novel 3D tumor array chip for drug screening. Bio-Des. Manuf. 3:175–188, 2020. https://doi.org/10.1007/s42242-020-00078-4.

    Article  Google Scholar 

  166. Xu, C., X. Li, P. Liu, M. Li, and F. Luo. Patient-derived xenograft mouse models: a high fidelity tool for individualized medicine. Oncol. Lett. 17(1):3–10, 2019. https://doi.org/10.3892/ol.2018.9583.

    Article  CAS  PubMed  Google Scholar 

  167. Yang, B., X. Wang, W. Liu, Q. Zhang, K. Chen, Y. Ma, C. Wang, and Z. Wang. Gender-related pharmacokinetics and absolute bioavailability of diosbulbin B in rats determined by ultra-performance liquid chromatography-tandem mass spectrometry. J. Ethnopharmacol. 149(3):810–815, 2013. https://doi.org/10.1016/j.jep.2013.08.010.

    Article  CAS  PubMed  Google Scholar 

  168. Yankaskas, C. L., K. N. Thompson, C. D. Paul, M. I. Vitolo, P. Mistriotis, A. Mahendra, V. K. Bajpai, D. J. Shea, K. M. Manto, A. C. Chai, N. Varadarajan, A. Kontrogianni-Konstantopoulos, S. S. Martin, and K. Konstantopoulos. A microfluidic assay for the quantification of the metastatic propensity of breast cancer specimens. Nat. Biomed. Eng. 3(6):452–465, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yeldag, G., A. Rice, and A. Del Rio Hernandez. Chemoresistance and the self-maintaining tumor microenvironment. Cancers 2018. https://doi.org/10.3390/cancers10120471.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Yu, L., C. Ni, S. M. Grist, C. Bayly, and K. C. Cheung. Alginate core-shell beads for simplified three-dimensional tumor spheroid culture and drug screening. Biomed. Microdevices 17(2):33, 2015.

    Article  PubMed  CAS  Google Scholar 

  171. Yuan, Y., L. Liu, H. Chen, Y. Wang, and Y. Xu. Comprehensive characterization of molecular differences in cancer between male and female patients. Cancer Cell 29(5):711–722, 2016. https://doi.org/10.1016/j.ccell.2016.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zervantonakis, I. K., S. K. Hughes-Alford, J. L. Charest, J. S. Condeelis, F. B. Gertler, and R. D. Kamm. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl. Acad. Sci. USA 109(34):13515–13520, 2012. https://doi.org/10.1073/pnas.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Zheng, X. T., L. Yu, P. Li, H. Dong, Y. Wang, Y. Liu, and C. M. Li. On-chip investigation of cell–drug interactions. Adv. Drug Del. Rev. 65(11–12):1556–1574, 2013.

    Article  CAS  Google Scholar 

  174. Zhou, S. F., S. Gopalakrishnan, Y. H. Xu, S. K. To, A. S. Wong, S. W. Pang, and Y. W. Lam. Substrates with patterned topography reveal metastasis of human cancer cells. Biomed. Mater. 12(5):055001, 2017.

    Article  PubMed  Google Scholar 

  175. Zoetemelk, M., M. Rausch, D. J. Colin, O. Dormond, and P. Nowak-Sliwinska. Short-term 3D culture systems of various complexity for treatment optimization of colorectal carcinoma. Sci. Rep. 9(1):1–14, 2019.

    Article  CAS  Google Scholar 

  176. Zorlutuna, P., N. Annabi, G. Camci-Unal, M. Nikkhah, J. M. Cha, J. W. Nichol, A. Manbachi, H. Bae, S. Chen, and A. Khademhosseini. Microfabricated biomaterials for engineering 3D tissues. Adv. Mater. 24(14):1782–1804, 2012. https://doi.org/10.1002/adma.201104631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the National Science Foundation (NSF) CBET Award #1914680.

Conflict of interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Nikkhah.

Additional information

Associate Editor Raffaella De Vita oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirghasemi, F., Adjei-Sowah, E., Pockaj, B.A. et al. Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers. Ann Biomed Eng 49, 1943–1972 (2021). https://doi.org/10.1007/s10439-020-02704-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02704-9

Keywords

Navigation