Skip to main content
Log in

Algebraic approach to the Dunkl–Coulomb problem and Dunkl oscillator in arbitrary dimensions

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

The Dunkl–Coulomb and the Dunkl oscillator models in arbitrary space-dimensions are introduced. These models are shown to be maximally superintegrable and exactly solvable. The energy spectrum and the wave functions of both systems are obtained using different realizations of the Lie algebra \(\text{ so }(1,2).\) The N-dimensional Dunkl oscillator admits separation of variables in both Cartesian and polar coordinates and the corresponding separated solutions are expressed in terms of the generalized Hermite, Laguerre and Gegenbauer polynomials. The N-dimensional Dunkl–Coulomb Hamiltonian admits separation of variables in polar coordinates and the separated wave functions are expressed in terms of the generalized Laguerre and Gegenbauer polynomials. The symmetry operators generalizing the Runge–Lenz vector operator are given. Together with the Dunkl angular momentum operators and reflection operators they generate the symmetry algebra of the N-dimensional Dunkl–Coulomb Hamiltonian which is a deformation of \(\text{ so }(N+1)\) by reflections for bound states and is a deformation of \(\text{ so }(N,1)\) by reflections for positive energy states. The symmetry operators of the N-dimensional Dunkl oscillator are obtained by the Schwinger construction and generate its invariance algebra which is a deformation of \({\textit{su}}(N)\) by reflections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, B.G., Čižek, J., Paldus, J.: Lie algebraic methods and their applications to simple quantum systems. Adv. Quantum Chem. 19, 1–85 (1988)

    Article  Google Scholar 

  2. Andrews, G.E., Askey, R., Roy, R.: Special Functions (Encyclopedia of Mathematics and its Applications), vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  3. Bargmann, V.: Irreducible unitary representations of the Lorentz group. Ann. Math. 48, 568–640 (1947)

    Article  MathSciNet  Google Scholar 

  4. Chaichian, M., Demichev, A.: Introduction to Quantum Groups. World Scientific, Singapore (1996)

    Book  Google Scholar 

  5. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon Breach, New York (1978)

    MATH  Google Scholar 

  6. Dai, F., Xu, Y.: Analysis on \(h\)-Harmonics and Dunkl Transforms (Advanced Courses in Mathematics. CRM Barcelona) ed S Tikhonov. Birkhäuser, Basel (2015)

  7. Dmitriev, F., Rumer Yu, B.: \(O(2,1)\) algebra and the hydrogen atom. Theor. Math. Phys. 5(2), 1146–1149 (1970). (transl. from Russian)

    Article  Google Scholar 

  8. Dunkl, C.F.: Differential-difference operators associated to refection groups. Trans. Am. Math. Soc. 311, 167–183 (1989)

    Article  Google Scholar 

  9. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  10. Feigin, M., Hakobyan, T.: Algebra of Dunkl Laplace–Runge–Lenz vector (arXiv: 1907.06706 v2) (2019)

  11. Genest, V.X., Lapointe, L., Vinet, L.: The Dunkl–Coulomb problem in the plane. Phys. Lett. A 379, 923–927 (2015)

    Article  MathSciNet  Google Scholar 

  12. Genest, V.X., Ismail, M.E.H., Vinet, L., Zhedanov, A.: The Dunkl oscillator in the plane I: superintegrability, separated wavefunctions and overlap coefficients. J. Phys. A, Math. Theor. 46, 145201 (2013)

    Article  MathSciNet  Google Scholar 

  13. Genest, V.X., Ismail, M.E.H., Vinet, L., Zhedanov, A.: The Dunkl oscillator in the plane II: representations of the symmetry algebra. Commun. Math. Phys. 329, 999–1029 (2014)

    Article  MathSciNet  Google Scholar 

  14. Genest, V.X., Vinet, L., Zhedanov, A.: The Dunkl oscillator in three dimensions. J. Phys. Conf. Ser. 512, 012010 (2014)

    Article  Google Scholar 

  15. Ghazouani, S., Sboui, I., Amdouni, M.A., Ben El Hadj Rhouma, M.: The Dunkl–Coulomb problem in three-dimensions: energy spectrum, wave functions and \(h\)-spherical harmonics. J. Phys. A: Math. Theor. 52, 225202 (2019)

    Article  MathSciNet  Google Scholar 

  16. Ghazouani, S., Sboui, I.: Superintegrability of the Dunkl–Coulomb problem in three-dimensions. J. Phys. A Math. Theor. 53, 035202 (2020)

    Article  MathSciNet  Google Scholar 

  17. Ghazouani, S., Bouzeffour, F.: Heisenberg uncertainty principle for a fractional power of the Dunkl transform on the real line. J. Comput. Appl. Math. 294, 151–176 (2016)

    Article  MathSciNet  Google Scholar 

  18. Ghazouani, S., Soltani, E.A., Fitouhi, A.: A unified class of integral transforms related to the Dunkl transform. J. Math. Anal. Appl. 449(2), 1797–1849 (2017)

    Article  MathSciNet  Google Scholar 

  19. Iachello, F.: Lie Algebras and Applications (Lect. Notes Phys. Vol. 708). Springer, Heidelberg (2006)

  20. Jafarov, E.I., Stoilova, N.I., Van der Jeugt, J.: Deformed \({\mathit{su}}(1,1)\) algebra as a model for quantum oscillators. S.I.G.M.A., 8 (2012)

  21. Mlodinow, L.D., Papanicolaou, N.: SO(2, l) Algebra and the large N expansion in quantum mechanics. Ann. Phys. 128(2), 314–334 (1980)

    Article  MathSciNet  Google Scholar 

  22. Plyushchay, M.S.: Deformed Heisenberg algebra with reflection. Nucl. Phys. B 491, 619–634 (1997)

    Article  MathSciNet  Google Scholar 

  23. Rosenblum, M.: Generalized Hermite polynomials and the Bose-like oscillator calculus. In: Operator Theory: Advances and Applications, Vol. 73, Birkhäuser Verlag, Basel, 369-396 (1994)

  24. Rösler, M.: Generalized Hermite polynomials and the heat equation for Dunkl operators. Commun. Math. Phys. 192, 519–541 (1998)

    Article  MathSciNet  Google Scholar 

  25. Szegö, G.: Orthogonal Polynomials. vol. 23, fourth ed., Amer. Math. Soc. Colloq. Publ., Providence, RI (1975)

  26. Xu, Y.: Orthogonal polynomials for a family of product weight functions on the spheres. Can. J. Math. 49, 175–192 (1997)

    Article  MathSciNet  Google Scholar 

  27. Xu, Y.: Uncertainty principle on weighted spheres, balls and simplexes. J. Approx. Theory 207, 193–206 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Ghazouani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: Proof of Theorem 4.1

First evaluate

$$\begin{aligned} a_{j,k,l,m}= & {} \left[ A_{j}^{+}A_{k}^{-}, A_{l}^{+}A_{m}^{-}\right] .\\ b_{j,k,l,m}= & {} \left[ A_{j}^{+}A_{k}^{-}, A_{m}^{+}A_{l}^{-}\right] .\\ c_{j,k,l,m}= & {} \left[ A_{k}^{+}A_{j}^{-}, A_{l}^{+}A_{m}^{-}\right] .\\ d_{j,k,l,m}= & {} \left[ A_{k}^{+}A_{j}^{-}, A_{m}^{+}A_{l}^{-}\right] . \end{aligned}$$

Using the commutation relations given in Definition 4.1

$$\begin{aligned} a_{j,k,l,m}= & {} A_{j}^{+}\left[ A_{k}^{-}, A_{l}^{+}\right] A_{m}^{-}+A_{l}^{+}\left[ A_{j}^{+}, A_{m}^{-}\right] A_{k}^{-}.\\= & {} \omega \left( 1+2\mu _{k}R_{k}\right) \delta _{l}^{k}A_{j}^{+}A_{m}^{-}-\omega \left( 1+2\mu _{j}R_{j}\right) \delta _{j}^{m}A_{l}^{+}A_{k}^{-}. \end{aligned}$$

Similarly

$$\begin{aligned} b_{j,k,l,m}= & {} \omega \left( 1+2\mu _{k}R_{k}\right) \delta _{k}^{m}A_{j}^{+}A_{l}^{-}-\omega \left( 1+2\mu _{j}R_{j}\right) \delta _{j}^{l}A_{m}^{+}A_{k}^{-}.\\ c_{j,k,l,m}= & {} \omega \left( 1+2\mu _{j}R_{j}\right) \delta _{j}^{l}A_{k}^{+}A_{m}^{-}-\omega \left( 1+2\mu _{k}R_{k}\right) \delta _{k}^{m}A_{l}^{+}A_{j}^{-}.\\ d_{j,k,l,m}= & {} \omega \left( 1+2\mu _{j}R_{j}\right) \delta _{j}^{m}A_{k}^{+}A_{l}^{-}-\omega \left( 1+2\mu _{k}R_{k}\right) \delta _{k}^{l}A_{m}^{+}A_{j}^{-}. \end{aligned}$$

Therefore

$$\begin{aligned} \left[ C_{j,k}, C_{l,m}\right]= & {} a_{j,k,l,m}+b_{j,k,l,m}+c_{j,k,l,m}+d_{j,k,l,m}\\= & {} \omega (1+2\mu _{j}R_{j})\delta _{j}^{l}D_{k,m}\\&+\omega (1+2\mu _{k}R_{k})\delta _{k}^{m}D_{j,l}+\omega (1+2\mu _{k}R_{k})\delta _{l}^{k}D_{j,m}\\&+\omega (1+2\mu _{j}R_{j})\delta _{m}^{j}D_{k,l}.\\ \left[ C_{j,k},D_{l,m}\right]= & {} a_{j,k,l,m}-b_{j,k,l,m}+c_{j,k,l,m}-d_{j,k,l,m}\\= & {} \omega (1+2\mu _{j}R_{j})\delta _{j}^{l}C_{k,m}\\&-\omega (1+2\mu _{k}R_{k})\delta _{k}^{m}C_{j,l}+\omega (1+2\mu _{k}R_{k})\delta _{l}^{k}C_{j,m}\\&-\omega (1+2\mu _{j}R_{j})\delta _{m}^{j}C_{k,l}.\\ \left[ D_{j,k},D_{l,m}\right]= & {} a_{j,k,l,m}-b_{j,k,l,m}-c_{j,k,l,m}+d_{j,k,l,m}\\= & {} -\omega (1+2\mu _{j}R_{j})\delta _{j}^{l}D_{k,m}\\&-\omega (1+2\mu _{k}R_{k})\delta _{k}^{m}D_{j,l}+\omega (1+2\mu _{k}R_{k})\delta _{l}^{k}D_{j,m}\\&+\omega (1+2\mu _{j}R_{j})\delta _{m}^{j}D_{k,l}. \end{aligned}$$

In similar fashion evaluate

$$\begin{aligned} a^{1}_{j,k,l}= & {} \left[ A_{j}^{+}A_{k}^{-}, A_{l}^{+}A_{l}^{-}\right] .\\ b^{1}_{j,k,l}= & {} \left[ A_{j}^{+}A_{k}^{-}, A_{l}^{-}A_{l}^{+}\right] .\\ c^{1}_{j,k,l}= & {} \left[ A_{k}^{+}A_{j}^{-}, A_{l}^{+}A_{l}^{-}\right] .\\ d^{1}_{j,k,l}= & {} \left[ A_{k}^{+}A_{j}^{-}, A_{l}^{-}A_{l}^{+}\right] . \end{aligned}$$

Using the commutation relations given in Definition 4.1

$$\begin{aligned} a^{1}_{j,k,l}= & {} A_{j}^{+}\left[ A_{k}^{-}, A_{l}^{+}\right] A_{l}^{-}+A_{l}^{+}\left[ A_{j}^{+}, A_{l}^{-}\right] A_{k}^{-}.\\= & {} \omega \left( 1+2\mu _{k}R_{k}\right) \delta _{l}^{k}A_{j}^{+}A_{l}^{-}-\omega \left( 1-2\mu _{j}R_{j}\right) \delta _{j}^{l}A_{l}^{+}A_{k}^{-}. \end{aligned}$$

Again

$$\begin{aligned} b^{1}_{j,k,l}= & {} -\omega \left( 1+2\mu _{j}R_{j}\right) \delta _{j}^{l}A_{k}^{-}A_{l}^{+}+\omega \left( 1-2\mu _{k}R_{k}\right) \delta _{l}^{k}A_{l}^{-}A_{j}^{+}.\\ c^{1}_{j,k,l}= & {} \omega \left( 1+2\mu _{j}R_{j}\right) \delta _{j}^{l}A_{k}^{+}A_{l}^{-}-\omega \left( 1-2\mu _{k}R_{k}\right) \delta _{k}^{l}A_{l}^{+}A_{j}^{-}.\\ d^{1}_{j,k,l}= & {} -\omega \left( 1+2\mu _{k}R_{k}\right) \delta _{k}^{l}A_{j}^{-}A_{l}^{+}+\omega \left( 1-2\mu _{j}R_{j}\right) \delta _{j}^{l}A_{l}^{-}A_{k}^{+}. \end{aligned}$$

Therefore

$$\begin{aligned} \left[ C_{j,k}, E_{l}\right]= & {} (1/2)(a^{1}_{j,k,l}+b^{1}_{j,k,l}+c^{1}_{j,k,l}+d^{1}_{j,k,l})=\left\{ \begin{array}{ll} 0; &{} j\ne k\ne l. \\ -\omega D_{j,k}; &{} j\ne k, l=j. \\ \omega D_{j,k}; &{} j\ne k, l=k. \end{array} \right. \\ \left[ D_{j,k}, E_{l}\right]= & {} (1/2)(a^{1}_{j,k,l}+b^{1}_{j,k,l}-c^{1}_{j,k,l}-d^{1}_{j,k,l})=\left\{ \begin{array}{ll} 0; &{} j\ne k\ne l. \\ -\omega C_{j,k}; &{} j\ne k, l=j. \\ \omega C_{j,k}; &{} j\ne k, l=k. \end{array} \right. \end{aligned}$$

From which we deduce

$$\begin{aligned} \left[ B, C_{j,k}\right]= & {} \left[ B, D_{j,k}\right] =0, \ 1\le j<k\le N. \end{aligned}$$

The other commutation relations can be proved in similar fashion.

Appendix: Proof of Proposition 5.3

Here we derive the relation (5.10), which is a quadratic relation involving the total Dunkl angular momentum \({\mathbf {J}}^{2},\) the Dunkl Coulomb Hamiltonian \({\mathcal {H}}\) and the square \({\mathbf {A}}^{2}\) of the Dunkl Runge–Lenz operators.

We use the definition (5.3) for \({\mathbf {A}}_{j}:\)

$$\begin{aligned} {\mathbf {A}}_{j}^{2}-\frac{\alpha ^{2}{\mathbf {x}}_{j}^{2}}{r^{2}}=a_{j}-b_{j}-ic_{j}-id_{j}-\alpha e_{j}-\alpha f_{j} , \end{aligned}$$

where

$$\begin{aligned} a_{j}= & {} \left( \displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}{\mathbf {J}}_{j,k}\right) ^{2},\\ b_{j}= & {} \left( {\mathbf {p}}_{j}\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) ^{2},\\ c_{j}= & {} \left( \displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}{\mathbf {J}}_{j,k}\right) {\mathbf {p}}_{j}\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) ,\\ d_{j}= & {} {\mathbf {p}}_{j}\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \left( \displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}{\mathbf {J}}_{j,k}\right) ,\\ e_{j}= & {} \left( \displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}{\mathbf {J}}_{j,k}-i{\mathbf {p}}_{j}\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) \frac{{\mathbf {x}}_{j}}{r},\\ f_{j}= & {} \frac{{\mathbf {x}}_{j}}{r}\left( \displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}{\mathbf {J}}_{j,k}-i{\mathbf {p}}_{j}\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) . \end{aligned}$$

We need the following Lemma

Lemma B.1

The following identities hold:

$$\begin{aligned} \displaystyle \sum _{j=1}^{N}a_{j}= & {} {\mathbf {p}}^{2}{\mathbf {J}}^{2}-2i\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}{\mathbf {p}}_{k}\displaystyle \sum _{j=1}^{N}{\mathbf {p}}_{j}{\mathbf {J}}_{k,j}. \end{aligned}$$
(B.1)
$$\begin{aligned} \displaystyle \sum _{j=1}^{N}b_{j}= & {} {\mathbf {p}}^{2}\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) ^{2}\nonumber \\&-2\left( \displaystyle \sum _{j=1}^{N}{\mathbf {p}}_{j}^{2}\mu _{j}{\mathbf {R}}_{j}\right) \left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) . \end{aligned}$$
(B.2)
$$\begin{aligned} \displaystyle \sum _{j=1}^{N}c_{j}= & {} 2i{\mathbf {p}}^{2}\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) ^{2}\nonumber \\&-2i\left( \displaystyle \sum _{j=1}^{N}{\mathbf {p}}_{j}^{2}\mu _{j}{\mathbf {R}}_{j}\right) \left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) . \end{aligned}$$
(B.3)
$$\begin{aligned} \displaystyle \sum _{j=1}^{N}d_{j}= & {} -2\displaystyle \sum _{j=1}^{N}\mu _{j}{\mathbf {R}}_{j}{\mathbf {p}}_{j}\displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}{\mathbf {J}}_{j,k}. \end{aligned}$$
(B.4)
$$\begin{aligned} \displaystyle \sum _{j=1}^{N}e_{j}= & {} \left( {\mathbf {J}}^{2}+i({\mathbf {p}}\cdot {\mathbf {x}} )\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) r^{-1}. \end{aligned}$$
(B.5)
$$\begin{aligned} \displaystyle \sum _{j=1}^{N}f_{j}= & {} r^{-1}\left( {\mathbf {J}}^{2}-i({\mathbf {x}}\cdot {\mathbf {p}})\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) . \end{aligned}$$
(B.6)

Proof

The proof of (B.2) is obvious.

Derivation of (B.1): From the commutation relation

$$\begin{aligned} \left[ {\mathbf {J}}_{j,k}, {\mathbf {p}}_{l}\right]= & {} i(1+2\mu _{l}{\mathbf {R}}_{l})\delta _{j}^{l}{\mathbf {p}}_{k}-i(1+2\mu _{l}{\mathbf {R}}_{l})\delta _{k}^{l}{\mathbf {p}}_{j}, \end{aligned}$$
(B.7)

we deduce

$$\begin{aligned} a_{j}= & {} \displaystyle \sum _{k,l=1}^{N}{\mathbf {p}}_{k}{\mathbf {J}}_{j,k}{\mathbf {p}}_{l}{\mathbf {J}}_{j,l} =\displaystyle \sum _{k,l=1}^{N}{\mathbf {p}}_{k}{\mathbf {p}}_{l}{\mathbf {J}}_{j,k}{\mathbf {J}}_{j,l}-i\displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}{\mathbf {p}}_{j}{\mathbf {J}}_{j,k} -2i\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}{\mathbf {p}}_{k}{\mathbf {p}}_{j}{\mathbf {J}}_{k,j}. \end{aligned}$$

Then

$$\begin{aligned} \displaystyle \sum _{j=1}^{N}a_{j}= & {} \displaystyle \sum _{j,k,l=1}^{N}{\mathbf {p}}_{k}{\mathbf {p}}_{l}{\mathbf {J}}_{j,k}{\mathbf {J}}_{j,l}-i\displaystyle \sum _{j,k=1}^{N}{\mathbf {p}}_{k}{\mathbf {p}}_{j}{\mathbf {J}}_{j,k} -2i\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}{\mathbf {p}}_{k}\displaystyle \sum _{j=1}^{N}{\mathbf {p}}_{j}{\mathbf {J}}_{k,j}. \end{aligned}$$
(B.8)

Since \({\mathbf {J}}_{j,k}=-{\mathbf {J}}_{k,j},\) we deduce

$$\begin{aligned} \displaystyle \sum _{j,k=1}^{N}{\mathbf {p}}_{k}{\mathbf {p}}_{j}{\mathbf {J}}_{j,k}=0. \end{aligned}$$
(B.9)

Now note that

$$\begin{aligned} \displaystyle \sum _{j,k,l=1}^{N}{\mathbf {p}}_{k}{\mathbf {p}}_{l}{\mathbf {J}}_{j,k}{\mathbf {J}}_{j,l}= & {} \displaystyle \sum _{s=1}^{N}{\mathbf {p}}_{s}^{2}\left( \displaystyle \sum _{\overset{j=1}{j\ne s}}^{N}{\mathbf {J}}_{j,s}^{2}\right) +\displaystyle \sum _{k\ne l,j\ne k,j\ne l}{\mathbf {p}}_{k}{\mathbf {p}}_{l}{\mathbf {J}}_{j,k}{\mathbf {J}}_{j,l} =\displaystyle \sum _{s=1}^{N}{\mathbf {p}}_{s}^{2}\left( \displaystyle \sum _{\overset{j=1}{j\ne s}}^{N}{\mathbf {J}}_{j,s}^{2}\right) \\&+\displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}\left( \displaystyle \sum _{j<l,j\ne k, l\ne k}{\mathbf {p}}_{l}{\mathbf {J}}_{j,k}{\mathbf {J}}_{j,l}+ \displaystyle \sum _{j>l,j\ne k, l\ne k}{\mathbf {p}}_{l}{\mathbf {J}}_{j,k}{\mathbf {J}}_{j,l}\right) \\= & {} \displaystyle \sum _{s=1}^{N}{\mathbf {p}}_{s}^{2}\left( \displaystyle \sum _{\overset{j=1}{j\ne s}}^{N}{\mathbf {J}}_{j,s}^{2}\right) +\displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}\left( \displaystyle \sum _{j<l,j\ne k, l\ne k}{\mathbf {p}}_{l}{\mathbf {J}}_{j,k}{\mathbf {J}}_{j,l}+ {\mathbf {p}}_{j}{\mathbf {J}}_{k,l}{\mathbf {J}}_{j,l}\right) . \end{aligned}$$

From (5.9):

$$\begin{aligned} {\mathbf {p}}_{l}{\mathbf {J}}_{j,k}{\mathbf {J}}_{j,l}+{\mathbf {p}}_{j}{\mathbf {J}}_{k,l}{\mathbf {J}}_{j,l}={\mathbf {p}}_{k}{\mathbf {J}}_{j,l}^{2}. \end{aligned}$$

Then

$$\begin{aligned} \displaystyle \sum _{j,k,l=1}^{N}{\mathbf {p}}_{k}{\mathbf {p}}_{l}{\mathbf {J}}_{j,k}{\mathbf {J}}_{j,l}= & {} {\mathbf {p}}^{2}{\mathbf {J}}^{2} \end{aligned}$$
(B.10)

Inserting (B.9) and (B.10) into (B.8), we obtain the final result.

Derivation of (B.3): From the commutation relation (2.20) we deduce:

$$\begin{aligned} {\mathbf {p}}_{k}{\mathbf {J}}_{j,k}={\mathbf {p}}_{k}^{2}{\mathbf {x}}_{j}-{\mathbf {x}}_{k}{\mathbf {p}}_{k}{\mathbf {p}}_{j}+i\left( 1+2\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {p}}_{j}; \ j\ne k. \end{aligned}$$

Then

$$\begin{aligned} \displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}{\mathbf {J}}_{j,k}={\mathbf {p}}^{2}{\mathbf {x}}_{j}-({\mathbf {x}}\cdot {\mathbf {p}}){\mathbf {p}}_{j}+2i{\mathbf {p}}_{j} +i\left( N-1+2\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}-2\mu _{j}{\mathbf {R}}_{j}\right) {\mathbf {p}}_{j}. \end{aligned}$$

Using (3.11), we obtain

$$\begin{aligned} \displaystyle \sum _{j=1}^{N}\left( \displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}{\mathbf {J}}_{j,k}\right) {\mathbf {p}}_{j}= & {} 2i{\mathbf {p}}^{2}\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) -2i\left( \displaystyle \sum _{j=1}^{N}{\mathbf {p}}_{j}^{2}\mu _{j}{\mathbf {R}}_{j}\right) , \end{aligned}$$

which gives the desired result.

Derivation of (B.4): From the commutation relation (2.19) we deduce:

$$\begin{aligned} \displaystyle \sum _{j=1}^{N}d_{j}= & {} -2\displaystyle \sum _{j=1}^{N}\mu _{j}{\mathbf {R}}_{j}{\mathbf {p}}_{j}\displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}{\mathbf {J}}_{j,k}\nonumber \\&+ \left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \displaystyle \sum _{j=1}^{N}{\mathbf {p}}_{j}\left( \displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}{\mathbf {J}}_{j,k}\right) . \end{aligned}$$

Using

$$\begin{aligned} {\mathbf {p}}_{k}{\mathbf {J}}_{j,k}={\mathbf {x}}_{j}{\mathbf {p}}_{k}^{2}-{\mathbf {p}}_{j}{\mathbf {p}}_{k}{\mathbf {x}}_{k}; \ j\ne k, \end{aligned}$$

we deduce

$$\begin{aligned} \displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}{\mathbf {J}}_{j,k}= & {} {\mathbf {x}}_{j}{\mathbf {p}}^{2}+{\mathbf {p}}_{j}^{2}{\mathbf {x}}_{j}-{\mathbf {x}}_{j}{\mathbf {p}}_{j}^{2}- {\mathbf {p}}_{j}\left( {\mathbf {p}}\cdot {\mathbf {x}}\right) =-2i{\mathbf {p}}_{j}+{\mathbf {x}}_{j}{\mathbf {p}}^{2}-{\mathbf {p}}_{j}\left( {\mathbf {p}}\cdot {\mathbf {x}}\right) . \end{aligned}$$

Then

$$\begin{aligned} \displaystyle \sum _{j=1}^{N}{\mathbf {p}}_{j}\left( \displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}{\mathbf {J}}_{j,k}\right)= & {} -2i{\mathbf {p}}^{2}+({\mathbf {p}}\cdot {\mathbf {x}}){\mathbf {p}}^{2}-{\mathbf {p}}^{2}\left( {\mathbf {p}}\cdot {\mathbf {x}}\right) =0. \end{aligned}$$

The last equality follows from

$$\begin{aligned} \left[ ({\mathbf {p}}\cdot {\mathbf {x}}),{\mathbf {p}}^{2}\right]= & {} 2i{\mathbf {p}}^{2}. \end{aligned}$$

Derivation of (B.5): We observe that:

$$\begin{aligned} \displaystyle \sum _{j=1}^{N}e_{j}= & {} \left( \displaystyle \sum _{j=1}^{N}\displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}{\mathbf {J}}_{j,k}{\mathbf {x}}_{j}\right) r^{-1} -i\displaystyle \sum _{j=1}^{N}{\mathbf {p}}_{j}\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {x}}_{j}r^{-1}. \end{aligned}$$

From the commutation relation (2.19) we obtain:

$$\begin{aligned} \displaystyle \sum _{j=1}^{N}{\mathbf {p}}_{j}\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {x}}_{j}= & {} ({\mathbf {p}}\cdot {\mathbf {x}} )\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \\&-2\displaystyle \sum _{j=1}^{N}\mu _{j}{\mathbf {R}}_{j}{\mathbf {p}}_{j}{\mathbf {x}}_{j}. \end{aligned}$$

Using (B.7)

$$\begin{aligned} {\mathbf {p}}_{k}{\mathbf {J}}_{j,k}{\mathbf {x}}_{j}= & {} {\mathbf {J}}_{j,k}{\mathbf {x}}_{j}{\mathbf {p}}_{k}+i\left( 1+2\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {p}}_{j}{\mathbf {x}}_{j}; \ j \ne k. \end{aligned}$$

Then

$$\begin{aligned} \displaystyle \sum _{j=1}^{N}\displaystyle \sum _{k=1}^{N}{\mathbf {p}}_{k}{\mathbf {J}}_{j,k}{\mathbf {x}}_{j}= & {} {\mathbf {J}}^{2}+2i({\mathbf {p}}\cdot {\mathbf {x}} )\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) -2i\displaystyle \sum _{j=1}^{N}\mu _{j}{\mathbf {R}}_{j}{\mathbf {p}}_{j}{\mathbf {x}}_{j}. \end{aligned}$$

Here we have used the fact that:

$$\begin{aligned} \displaystyle \sum _{j=1}^{N}\displaystyle \sum _{\overset{k=1}{k\ne j}}^{N}{\mathbf {J}}_{j,k}{\mathbf {x}}_{j}{\mathbf {p}}_{k}= & {} \displaystyle \sum _{j=1}^{N}\left( \displaystyle \sum _{j<k}{\mathbf {J}}_{j,k}{\mathbf {x}}_{j}{\mathbf {p}}_{k}+\displaystyle \sum _{j>k}{\mathbf {J}}_{j,k}{\mathbf {x}}_{j}{\mathbf {p}}_{k}\right) = \displaystyle \sum _{j=1}^{N}\displaystyle \sum _{j<k}{\mathbf {J}}_{j,k}^{2}={\mathbf {J}}^{2}. \end{aligned}$$

Collect these results to obtain the desired result.

Derivation of (B.6): This follows from the fact that:

$$\begin{aligned} \displaystyle \sum _{j=1}^{N}\displaystyle \sum _{k=1}^{N}{\mathbf {x}}_{j}{\mathbf {p}}_{k}{\mathbf {J}}_{j,k}= & {} {\mathbf {J}}^{2}. \end{aligned}$$

\(\square \)

To prove Proposition 5.3, we use the previous lemma to write

$$\begin{aligned} {\mathbf {A}}^{2}-\alpha ^{2}= & {} {\mathbf {p}}^{2}{\mathbf {J}}^{2}+{\mathbf {p}}^{2}\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) ^{2}\\&-2\alpha r^{-1}{\mathbf {J}}^{2}-i\alpha \left( ({\mathbf {p}}\cdot {\mathbf {x}})r^{-1}-r^{-1}({\mathbf {x}}\cdot {\mathbf {p}})\right) \left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \\= & {} 2{\mathcal {H}}\left( {\mathbf {J}}^{2}+\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) ^{2}\right) . \end{aligned}$$

Here we have used:

$$\begin{aligned} ({\mathbf {p}}\cdot {\mathbf {x}})r^{-1}-r^{-1}({\mathbf {x}}\cdot {\mathbf {p}})= & {} -2i r^{-1}\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) . \end{aligned}$$

Appendix: Proof of Proposition 5.4

First observe that we can write

$$\begin{aligned} {\mathbf {B}}_{j}^{\alpha }{\mathbf {B}}_{j}^{\beta }= & {} \frac{1}{4}\left( {\mathbf {x}}_{j}{\mathbf {p}}^{2}\right) \left( {\mathbf {x}}_{j}{\mathbf {p}}^{2}\right) \\&-\frac{\beta }{4}\left( {\mathbf {x}}_{j}{\mathbf {p}}^{2}\right) {\mathbf {x}}_{j}-\frac{\alpha }{4}x_{j}^{2}{\mathbf {p}}^{2}+ \frac{\alpha }{2}{\mathbf {x}}_{j}{\mathbf {p}}_{j}\left( ({\mathbf {x}}\cdot {\mathbf {p}})-i\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) \\&+\frac{\alpha \beta }{4}x_{j}^{2}-\frac{1}{2}a_{j}-\frac{1}{2}b_{j}+c_{j}+\frac{\beta }{2}d_{j}, \end{aligned}$$

where

$$\begin{aligned} a_{j}= & {} \left( {\mathbf {x}}_{j}{\mathbf {p}}^{2}\right) {\mathbf {p}}_{j}\left( ({\mathbf {x}}\cdot {\mathbf {p}})-i\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) ,\\ b_{j}= & {} {\mathbf {p}}_{j}\left( ({\mathbf {x}}\cdot {\mathbf {p}})-i\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) \left( {\mathbf {x}}_{j}{\mathbf {p}}^{2}\right) ,\\ c_{j}= & {} {\mathbf {p}}_{j}\left( ({\mathbf {x}}\cdot {\mathbf {p}})-i\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) {\mathbf {p}}_{j}\left( ({\mathbf {x}}\cdot {\mathbf {p}})-i\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) ,\\ d_{j}= & {} {\mathbf {p}}_{j}\left( ({\mathbf {x}}\cdot {\mathbf {p}})-i\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) x_{j}. \end{aligned}$$

Using (3.9), we get

$$\begin{aligned} \left( {\mathbf {x}}_{j}{\mathbf {p}}^{2}\right) \left( {\mathbf {x}}_{j}{\mathbf {p}}^{2}\right)= & {} {\mathbf {x}}_{j}\left( {\mathbf {x}}_{j}{\mathbf {p}}^{2}-2i{\mathbf {p}}_{j}\right) {\mathbf {p}}^{2},\\ \left( {\mathbf {x}}_{j}{\mathbf {p}}^{2}\right) {\mathbf {x}}_{j}= & {} {\mathbf {x}}_{j}\left( {\mathbf {p}}^{2}{\mathbf {x}}_{j}\right) ={\mathbf {x}}_{j}\left( {\mathbf {x}}_{j}{\mathbf {p}}^{2}-2i{\mathbf {p}}_{j}\right) \end{aligned}$$

then

$$\begin{aligned} \displaystyle \sum _{j=1}^{N}\left( {\mathbf {x}}_{j}{\mathbf {p}}^{2}\right) \left( {\mathbf {x}}_{j}{\mathbf {p}}^{2}\right)= & {} r^{2}{\mathbf {p}}^{4}-2i\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) {\mathbf {p}}^{2},\end{aligned}$$
(C.1)
$$\begin{aligned} \displaystyle \sum _{j=1}^{N}\left( {\mathbf {x}}_{j}{\mathbf {p}}^{2}\right) {\mathbf {x}}_{j}= & {} r^{2}{\mathbf {p}}^{2}-2i\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) . \end{aligned}$$
(C.2)

By means of (3.11),

$$\begin{aligned} a_{j}= & {} \left( {\mathbf {x}}_{j}{\mathbf {p}}_{j}\right) \left( {\mathbf {p}}^{2}({\mathbf {x}}\cdot {\mathbf {p}})-i{\mathbf {p}}^{2}\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) \\= & {} \left( {\mathbf {x}}_{j}{\mathbf {p}}_{j}\right) \left( \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) {\mathbf {p}}^{2}-2i{\mathbf {p}}^{2}-i{\mathbf {p}}^{2}\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) , \end{aligned}$$

then

$$\begin{aligned} \displaystyle \sum _{j=1}^{N}a_{j}= & {} \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) ^{2}{\mathbf {p}}^{2}-2i\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) {\mathbf {p}}^{2}-i\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) {\mathbf {p}}^{2}\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) .\nonumber \\ \end{aligned}$$
(C.3)

A similar argument gives

$$\begin{aligned} b_{j}= & {} \left( \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) -i\left( \frac{N-1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) \left( {\mathbf {x}}_{j}{\mathbf {p}}_{j}-i\left( 1+2\mu _{j}{\mathbf {R}}_{j}\right) \right) {\mathbf {p}}^{2}, \end{aligned}$$

then

$$\begin{aligned} \displaystyle \sum _{j=1}^{N}b_{j}= & {} \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) ^{2}{\mathbf {p}}^{2}-i\left( \frac{3N-1}{2}+3\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) {\mathbf {p}}^{2}\nonumber \\&-\left( \frac{N-1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \left( N+2\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {p}}^{2}. \end{aligned}$$
(C.4)

Rewrite \(c_{j}\) as

$$\begin{aligned} c_{j}= & {} I_{1}-iI_{2}-iI_{3}-I_{4}, \end{aligned}$$

where

$$\begin{aligned} I_{1}= & {} {\mathbf {p}}_{j}\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) {\mathbf {p}}_{j}\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) ,\\ I_{2}= & {} {\mathbf {p}}_{j}\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) {\mathbf {p}}_{j}\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) ,\\ I_{3}= & {} {\mathbf {p}}_{j}\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {p}}_{j}\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) ,\\ I_{4}= & {} {\mathbf {p}}_{j}\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {p}}_{j}\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) . \end{aligned}$$

Using (2.19) and (3.13) , we obtain

$$\begin{aligned} I_{1}= & {} \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) {\mathbf {p}}_{j}^{2}\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) -i(1+2\mu _{j}{\mathbf {R}}_{j}){\mathbf {p}}_{j}^{2}\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) ,\\ I_{2}= & {} \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) {\mathbf {p}}_{j}^{2}\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) -i(1+2\mu _{j}{\mathbf {R}}_{j}){\mathbf {p}}_{j}^{2}\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) ,\\ I_{3}= & {} \left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}-2\mu _{j}{\mathbf {R}}_{j}\right) {\mathbf {p}}_{j}^{2}\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) ,\\ I_{4}= & {} \left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}-2\mu _{j}{\mathbf {R}}_{j}\right) {\mathbf {p}}_{j}^{2}\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) . \end{aligned}$$

Then

$$\begin{aligned}&\displaystyle \sum _{j=1}^{N}c_{j}=\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) ^{2}{\mathbf {p}}^{2}-i\left( N+2\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) {\mathbf {p}}^{2}\\&\quad -\left( \frac{N-1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \left( \frac{N+1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {p}}^{2} \end{aligned}$$

In similar fashion, we can prove

$$\begin{aligned} d_{j}= & {} \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) {\mathbf {x}}_{j}{\mathbf {p}}_{j}-i\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) \left( 1+2\mu _{j}{\mathbf {R}}_{j}\right) \\&-i\left( {\mathbf {x}}_{j}{\mathbf {p}}_{j}-i\left( 1+2\mu _{j}{\mathbf {R}}_{j}\right) \right) \left( \frac{N-1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) . \end{aligned}$$

This implies

$$\begin{aligned} \displaystyle \sum _{j=1}^{N}d_{j}= & {} \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) ^{2}-i\left( \frac{3N-1}{2}+3\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) \nonumber \\&-\left( \frac{N-1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \left( N+2\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) . \end{aligned}$$
(C.5)

After simplification we get

$$\begin{aligned} {\mathbf {B}}^{\alpha }.{\mathbf {B}}^{\beta }= & {} \frac{1}{4}\ r^{2}{\mathbf {p}}^{4}-\frac{1}{4} \ (\alpha +\beta )r^{2}{\mathbf {p}}^{2}+ \frac{1}{4} \ \alpha \beta r^{2}-\frac{i}{2}\ \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) {\mathbf {p}}^{2}+ \frac{1}{2} \ (\alpha +\beta )\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) ^{2}\\&-\frac{3i\beta }{2}\left( \frac{N-1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) -\frac{1}{2}\left( \frac{N-1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {p}}^{2}\\&\quad -\frac{i\alpha }{2}\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) \\&\quad -\frac{\beta }{2}\left( \frac{N-1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \left( N+2\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) . \end{aligned}$$

Now using (3.10)

$$\begin{aligned} r^{2}{\mathbf {p}}^{4}= & {} r\left( r{\mathbf {p}}^{2}\right) {\mathbf {p}}^{2}=r\left( {\mathbf {p}}^{2}r+2ir^{-1}\left( \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) -i\left( \frac{N-1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) \right) {\mathbf {p}}^{2}\\= & {} \left( r{\mathbf {p}}^{2}\right) ^{2}+2i\left( \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) -i\left( \frac{N-1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) {\mathbf {p}}^{2} \end{aligned}$$

and

$$\begin{aligned} \beta r^{2}{\mathbf {p}}^{2}= & {} \beta \left( r{\mathbf {p}}^{2}\right) r+2i\beta \left( \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) -i\left( \frac{N-1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) \end{aligned}$$

Hence

$$\begin{aligned} {\mathbf {B}}^{\alpha }.{\mathbf {B}}^{\beta }= & {} \frac{1}{4}\left( r{\mathbf {p}}^{2}-\alpha r\right) \left( r{\mathbf {p}}^{2}-\beta r\right) +\frac{\alpha +\beta }{2}\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) ^{2}\\&-\frac{i\alpha }{2}\left( \frac{N-3}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) -\frac{i\beta }{2}\left( \frac{3N-1}{2}+3\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) \\&-\frac{\beta }{2}\left( \frac{N-1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \left( N+1+2\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) . \end{aligned}$$

Finally, substituting

$$\begin{aligned} \left( {\mathbf {x}}\cdot {\mathbf {p}}\right)= & {} {\mathbf {T}}_{2}+i\left( \frac{N-1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \\ \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) ^{2}= & {} {\mathbf {T}}_{2}^{2}+2i\left( \frac{N-1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {T}}_{2}-\left( \frac{N-1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) ^{2} \end{aligned}$$

gives

$$\begin{aligned} {\mathbf {B}}^{\alpha }.{\mathbf {B}}^{\beta }= & {} \frac{1}{4}\left( r{\mathbf {p}}^{2}-\alpha r\right) \left( r{\mathbf {p}}^{2}-\beta r\right) +\frac{\alpha +\beta }{2}\left( {\mathbf {T}}_{2}^{2}-\left( \frac{N-1}{2}+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right) \\&+i(\alpha -\beta )\left( \frac{N+1}{4}+\frac{1}{2}\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {T}}_{2}. \end{aligned}$$

Appendix: Proof of Theorem 5.1

Let us derive the commutation relation between \({\mathbf {J}}_{j,k}\) with \({\mathbf {A}}_{l}.\) We use the representation (5.3) for \({\mathbf {A}}_{l},\) then

$$\begin{aligned} \left[ {\mathbf {J}}_{j,k},{\mathbf {A}}_{l}\right]= & {} \displaystyle \sum _{m=1}^{N}\left[ {\mathbf {J}}_{j,k},{\mathbf {p}}_{m}{\mathbf {J}}_{l,m}\right] -i \left[ {\mathbf {J}}_{j,k},{\mathbf {p}}_{l}\left( (N-1)/2+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) \right] \\&-\alpha \left[ {\mathbf {J}}_{j,k},{\mathbf {x}}_{l}r^{-1}\right] . \end{aligned}$$

By the definition of \({\mathbf {J}}_{j,k}\), (2.20) and (5.18), we see that:

$$\begin{aligned} \left[ {\mathbf {J}}_{j,k},{\mathbf {x}}_{l}r^{-1}\right]= & {} \left\{ \begin{array}{ll} 0, &{} j\ne k \ne l. \\ i(1+2\mu _{j}{\mathbf {R}}_{j}){\mathbf {x}}_{k}r^{-1}, &{} j \ne k, l=j. \\ -i(1+2\mu _{k}{\mathbf {R}}_{k}){\mathbf {x}}_{j}r^{-1}, &{} j \ne k, l=k. \end{array} \right. \end{aligned}$$

Using (5.15), (B.7) and the fact that \([a,bc]=[a,b]c+b[a,c],\) we deduce

$$\begin{aligned} \displaystyle \sum _{m=1}^{N}\left[ {\mathbf {J}}_{j,k},{\mathbf {p}}_{m}{\mathbf {J}}_{l,m}\right]= & {} 2i\left( \mu _{j}{\mathbf {R}}_{j}+\mu _{k}{\mathbf {R}}_{k}\right) \left( {\mathbf {p}}_{j}{\mathbf {J}}_{k,l}+{\mathbf {p}}_{k}{\mathbf {J}}_{l,j}\right) \\+ & {} i\delta _{l}^{j}\displaystyle \sum _{m=1}^{N}{\mathbf {p}}_{m}\left( 1+2\mu _{j}{\mathbf {R}}_{j}\right) {\mathbf {J}}_{k,m}-i\delta _{l}^{k}\displaystyle \sum _{m=1}^{N}{\mathbf {p}}_{m}\left( 1+2\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {J}}_{j,m}. \end{aligned}$$

In similar fashion, we can prove

$$\begin{aligned}&\left[ {\mathbf {J}}_{j,k},{\mathbf {p}}_{l}\left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \right] \\&\quad = i\left( (1+2\mu _{l}{\mathbf {R}}_{l})\delta _{j}^{l}{\mathbf {p}}_{k}-(1+2\mu _{l}{\mathbf {R}}_{l})\delta _{k}^{l}{\mathbf {p}}_{j}\right) \left( (N-1)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) \\&\qquad -2{\mathbf {p}}_{l}\left( \mu _{j}{\mathbf {R}}_{j}+\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {J}}_{j,k}. \end{aligned}$$

Collect these results and use the fact that

$$\begin{aligned} {\mathbf {p}}_{j}{\mathbf {J}}_{k,l}+{\mathbf {p}}_{l}{\mathbf {J}}_{j,k}+{\mathbf {p}}_{k}{\mathbf {J}}_{l,j}=0; \ j\ne k\ne l, \end{aligned}$$

we obtain

$$\begin{aligned} \left[ {\mathbf {J}}_{j,k},{\mathbf {A}}_{l}\right]= & {} \left\{ \begin{array}{ll} 0, &{} j\ne k\ne l. \\ i\left( 1+2\mu _{j}{\mathbf {R}}_{j}\right) {\mathbf {A}}_{k}, &{} j\ne k, l=j. \\ -i\left( 1+2\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {A}}_{j}, &{} j\ne k, l=k. \end{array} \right. \end{aligned}$$
(D.1)

Let us derive the commutation relation between \({\mathbf {A}}_{j}\) with \({\mathbf {A}}_{k}.\) We use the representation (5.2) for \({\mathbf {A}}_{j},\) then

$$\begin{aligned} \left[ {\mathbf {A}}_{j},{\mathbf {A}}_{k}\right]= & {} \frac{1}{4}\left[ {\mathbf {x}}_{j}{\mathbf {p}}^{2}, {\mathbf {x}}_{k}{\mathbf {p}}^{2}\right] +\left[ {\mathbf {x}}_{j}{\mathcal {H}}, {\mathbf {x}}_{k}{\mathcal {H}}\right] +a_{j,k}-\frac{1}{2} \left( b_{j,k}-b_{k,j}\right) \nonumber \\&+\frac{1}{2} \left( c_{j,k}-c_{k,j}\right) - \left( d_{j,k}-d_{k,j}\right) , \end{aligned}$$
(D.2)

where

$$\begin{aligned} a_{j,k}= & {} \left[ {\mathbf {p}}_{j}\left( ({\mathbf {x}}\cdot {\mathbf {p}})-i\left( \frac{N-3}{2}+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) \right) , {\mathbf {p}}_{k}\left( ({\mathbf {x}}\cdot {\mathbf {p}}) \right. \right. \\&\quad \left. \left. -i\left( \frac{N-3}{2}+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) \right) \right] \\ b_{j,k}= & {} \left[ {\mathbf {x}}_{j}{\mathbf {p}}^{2}, {\mathbf {p}}_{k}\left( ({\mathbf {x}}\cdot {\mathbf {p}})-i\left( \frac{N-3}{2}+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) \right) \right] \\ c_{j,k}= & {} \left[ {\mathbf {x}}_{j}{\mathbf {p}}^{2},{\mathbf {x}}_{k}{\mathcal {H}} \right] \\ d_{j,k}= & {} \left[ {\mathbf {p}}_{j}\left( ({\mathbf {x}}\cdot {\mathbf {p}})-i\left( \frac{N-3}{2}+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) \right) ,{\mathbf {x}}_{k}{\mathcal {H}}\right] . \end{aligned}$$

Using (3.9) and the fact that \([a,bc]=[a,b]c+b[a,c],\) we deduce

$$\begin{aligned} \left[ {\mathbf {x}}_{j}{\mathbf {p}}^{2}, {\mathbf {x}}_{k}{\mathbf {p}}^{2}\right] =-2i \ {\mathbf {J}}_{j,k} \ {\mathbf {p}}^{2}. \end{aligned}$$
(D.3)

In similar fashion, we can prove

$$\begin{aligned} \left[ {\mathbf {x}}_{j}{\mathcal {H}}, {\mathbf {x}}_{k}{\mathcal {H}}\right] =-i \ {\mathbf {J}}_{j,k} {\mathcal {H}}. \end{aligned}$$
(D.4)

It is easy to see that

$$\begin{aligned} a_{j,k}= & {} \alpha _{j,k}-i(\beta _{j,k}-\beta _{k,j})-\gamma _{j,k}, \end{aligned}$$

where

$$\begin{aligned} \alpha _{j,k}= & {} \left[ {\mathbf {p}}_{j}({\mathbf {x}}\cdot {\mathbf {p}}),{\mathbf {p}}_{k}({\mathbf {x}}\cdot {\mathbf {p}})\right] .\\ \beta _{j,k}= & {} \left[ {\mathbf {p}}_{j}({\mathbf {x}}\cdot {\mathbf {p}}),{\mathbf {p}}_{k}\left( \frac{N-3}{2}+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) \right] .\\ \gamma _{j,k}= & {} \left[ {\mathbf {p}}_{j}\left( \frac{N-3}{2}+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) ,{\mathbf {p}}_{k}\left( \frac{N-3}{2}+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) \right] . \end{aligned}$$

Using (3.13)

$$\begin{aligned} \alpha _{j,k}= & {} {\mathbf {p}}_{j}\left[ ({\mathbf {x}}\cdot {\mathbf {p}}),{\mathbf {p}}_{k}\right] ({\mathbf {x}}\cdot {\mathbf {p}})+ {\mathbf {p}}_{k}\left[ {\mathbf {p}}_{j},({\mathbf {x}}\cdot {\mathbf {p}})\right] ({\mathbf {x}}\cdot {\mathbf {p}})\\= & {} 2i\left( \mu _{k}{\mathbf {p}}_{j}{\mathbf {R}}_{k}{\mathbf {p}}_{k}-\mu _{j}{\mathbf {p}}_{k}{\mathbf {R}}_{j}{\mathbf {p}}_{j}\right) ({\mathbf {x}}\cdot {\mathbf {p}}).\\ \beta _{j,k}= & {} \left( i{\mathbf {p}}_{j}{\mathbf {p}}_{k}+2i\mu _{k}{\mathbf {p}}_{j}{\mathbf {R}}_{k}{\mathbf {p}}_{k}\right) \left( (N-3)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) -2\mu _{j}{\mathbf {p}}_{k}{\mathbf {R}}_{j}{\mathbf {p}}_{j}({\mathbf {x}}\cdot {\mathbf {p}}).\\ \gamma _{j,k}= & {} 2\left( \mu _{k}{\mathbf {p}}_{j}{\mathbf {R}}_{k}{\mathbf {p}}_{k}-\mu _{j}{\mathbf {p}}_{k}{\mathbf {R}}_{j}{\mathbf {p}}_{j}\right) \left( (N-3)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) . \end{aligned}$$

Then

$$\begin{aligned} a_{j,k}= & {} 0. \end{aligned}$$
(D.5)

It is easy to see that

$$\begin{aligned} b_{j,k}= & {} \left[ {\mathbf {x}}_{j}{\mathbf {p}}^{2}, {\mathbf {p}}_{k}({\mathbf {x}}\cdot {\mathbf {p}})\right] -i\left[ {\mathbf {x}}_{j}{\mathbf {p}}^{2},{\mathbf {p}}_{k}\left( \frac{N-3}{2}+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) \right] . \end{aligned}$$

Using (2.20), (3.11) and (3.12)

$$\begin{aligned} \left[ {\mathbf {x}}_{j}{\mathbf {p}}^{2}, {\mathbf {p}}_{k}({\mathbf {x}}\cdot {\mathbf {p}})\right]= & {} {\mathbf {x}}_{j}{\mathbf {p}}_{k}\left[ {\mathbf {p}}^{2},({\mathbf {x}}\cdot {\mathbf {p}})\right] + {\mathbf {p}}_{k}\left[ {\mathbf {x}}_{j},({\mathbf {x}}\cdot {\mathbf {p}})\right] {\mathbf {p}}^{2}+\left[ {\mathbf {x}}_{j},{\mathbf {p}}_{k}\right] ({\mathbf {x}}\cdot {\mathbf {p}}){\mathbf {p}}^{2}\\= & {} -i{\mathbf {x}}_{j}{\mathbf {p}}_{k}{\mathbf {p}}^{2}+2i\mu _{j}{\mathbf {p}}_{k}{\mathbf {x}}_{j}{\mathbf {R}}_{j}{\mathbf {p}}^{2}+ \left( 1+2\mu _{k}{\mathbf {R}}_{k}\right) \delta _{j}^{k}{\mathbf {p}}^{2}\\&+i\left( 1+2\mu _{k}{\mathbf {R}}_{k}\right) \delta _{j}^{k}({\mathbf {x}}\cdot {\mathbf {p}}){\mathbf {p}}^{2}. \end{aligned}$$

In similar fashion, we can prove

$$\begin{aligned}&\left[ {\mathbf {x}}_{j}{\mathbf {p}}^{2},{\mathbf {p}}_{k}\left( \frac{N-3}{2}+\mu _{1}{\mathbf {R}}_{1}+\dots + \mu _{N}{\mathbf {R}}_{N}\right) \right] \\&\quad =2\mu _{j}{\mathbf {p}}_{k}{\mathbf {x}}_{j}{\mathbf {R}}_{j}{\mathbf {p}}^{2} +i\left( 1+2\mu _{j}{\mathbf {R}}_{j}\right) \delta _{j}^{k}\left( (N-3)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {p}}^{2} \end{aligned}$$

Then

$$\begin{aligned} b_{j,k}-b_{k,j}= & {} -i \ {\mathbf {J}}_{j,k}\ {\mathbf {p}}^{2}. \end{aligned}$$
(D.6)

Using (3.9), we obtain

$$\begin{aligned} c_{j,k}= & {} {\mathbf {x}}_{j}{\mathbf {x}}_{k}\left[ {\mathbf {p}}^{2},{\mathcal {H}}\right] + {\mathbf {x}}_{j}\left[ {\mathbf {p}}^{2},{\mathbf {x}}_{k}\right] {\mathcal {H}}+\frac{{\mathbf {x}}_{k}}{2} \left[ {\mathbf {x}}_{j},{\mathbf {p}}^{2}\right] {\mathbf {p}}^{2}\\= & {} {\mathbf {x}}_{j}{\mathbf {x}}_{k}\left[ {\mathbf {p}}^{2},{\mathcal {H}}\right] -2i{\mathbf {x}}_{j}{\mathbf {p}}_{k}{\mathcal {H}}+i{\mathbf {x}}_{k}{\mathbf {p}}_{j}{\mathbf {p}}^{2}. \end{aligned}$$

Then

$$\begin{aligned} c_{j,k}-c_{k,j}= & {} -i \ {\mathbf {J}}_{j,k}\ \left( 2{\mathcal {H}}+{\mathbf {p}}^{2}\right) . \end{aligned}$$
(D.7)

It is easy to see that

$$\begin{aligned} d_{j,k}= & {} \left[ {\mathbf {p}}_{j}({\mathbf {x}}\cdot {\mathbf {p}}), {\mathbf {x}}_{k}{\mathcal {H}}\right] -i\left[ {\mathbf {p}}_{j}\left( \frac{N-3}{2}+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) ,{\mathbf {x}}_{k}{\mathcal {H}}\right] . \end{aligned}$$

Using (3.11), (3.14), (2.21) and (2.20), we deduce

$$\begin{aligned} \left[ {\mathbf {p}}_{j}({\mathbf {x}}\cdot {\mathbf {p}}), {\mathbf {x}}_{k}{\mathcal {H}}\right]= & {} {\mathbf {p}}_{j}{\mathbf {x}}_{k}\left[ ({\mathbf {x}}\cdot {\mathbf {p}}),{\mathcal {H}}\right] +{\mathbf {p}}_{j}\left[ ({\mathbf {x}}\cdot {\mathbf {p}}),{\mathbf {x}}_{k}\right] {\mathcal {H}}+{\mathbf {x}}_{k}\left[ {\mathbf {p}}_{j},{\mathcal {H}}\right] ({\mathbf {x}}\cdot {\mathbf {p}})\\&+ \left[ {\mathbf {p}}_{j},{\mathbf {x}}_{k}\right] {\mathcal {H}}({\mathbf {x}}\cdot {\mathbf {p}})\\= & {} \frac{i}{2}\left( {\mathbf {x}}_{k}{\mathbf {p}}_{j}-i\left( 1+2\mu _{k}{\mathbf {R}}_{k}\right) \delta _{j}^{k}\right) {\mathbf {p}}^{2}-2i\mu _{k}{\mathbf {p}}_{j}{\mathbf {x}}_{k} {\mathbf {R}}_{k}{\mathcal {H}}\\&-i\alpha {\mathbf {x}}_{k}{\mathbf {x}}_{j}r^{-3}({\mathbf {x}}\cdot {\mathbf {p}})-i\left( 1+2\mu _{j}{\mathbf {R}}_{j}\right) \delta _{j}^{k}{\mathcal {H}}({\mathbf {x}}\cdot {\mathbf {p}}). \end{aligned}$$

In similar fashion, we can prove

$$\begin{aligned}&\left[ {\mathbf {p}}_{j}\left( \frac{N-3}{2}+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) ,{\mathbf {x}}_{k}{\mathcal {H}}\right] = -2\mu _{k}{\mathbf {p}}_{j}{\mathbf {x}}_{k}{\mathbf {R}}_{k}{\mathcal {H}}\\&-i\left( \left( 1+2\mu _{j}{\mathbf {R}}_{j}\right) \delta _{j}^{k}{\mathcal {H}}+\alpha {\mathbf {x}}_{k}{\mathbf {x}}_{j}r^{-3}\right) \left( (N-3)/2+\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right) . \end{aligned}$$

Then

$$\begin{aligned} d_{j,k}-d_{k,j}= & {} -\frac{i}{2} \ {\mathbf {J}}_{j,k}\ {\mathbf {p}}^{2}. \end{aligned}$$
(D.8)

Finally, inserting (D.3) to (D.8) into (D.2), we obtain

$$\begin{aligned} \left[ {\mathbf {A}}_{j},{\mathbf {A}}_{k}\right]= & {} -2i{\mathcal {H}} \ {\mathbf {J}}_{j,k}. \end{aligned}$$
(D.9)

Investigation of Casimir operator: We first observe that the operator \({\mathbf {C}}_{1}\) defined by (5.24) commutes with the reflection operators \({\mathbf {R}}_{j}, \ j=1,\dots ,N.\) From the definition of the \({\mathbf {A}}^{2}\), (D.1) and (D.9) it can be seen that

$$\begin{aligned} \left[ {\mathbf {J}}_{j,k},{\mathbf {A}}^{2}\right]= & {} \displaystyle \sum _{l=1}^{N}\left[ {\mathbf {J}}_{j,k},{\mathbf {A}}_{l}^{2}\right] = \left[ {\mathbf {J}}_{j,k},{\mathbf {A}}_{j}^{2}\right] +\left[ {\mathbf {J}}_{j,k},{\mathbf {A}}_{k}^{2}\right] \\= & {} \left[ {\mathbf {J}}_{j,k},{\mathbf {A}}_{j}\right] {\mathbf {A}}_{j}+{\mathbf {A}}_{j}\left[ {\mathbf {J}}_{j,k},{\mathbf {A}}_{j}\right] +\left[ {\mathbf {J}}_{j,k},{\mathbf {A}}_{k}\right] {\mathbf {A}}_{k}+{\mathbf {A}}_{k}\left[ {\mathbf {J}}_{j,k},{\mathbf {A}}_{k}\right] \\= & {} -2i\left( \mu _{j}{\mathbf {R}}_{j}+\mu _{k}{\mathbf {R}}_{k}\right) \left[ {\mathbf {A}}_{j},{\mathbf {A}}_{k}\right] \\= & {} -4\left( \mu _{j}{\mathbf {R}}_{j}+\mu _{k}{\mathbf {R}}_{k}\right) {\mathcal {H}} \ {\mathbf {J}}_{j,k}. \end{aligned}$$

Since \({\mathcal {H}}\) commutes with \({\mathbf {R}}_{j}\) and \({\mathbf {J}}_{j,k},\) then

$$\begin{aligned} -4\left( \mu _{j}{\mathbf {R}}_{j}+\mu _{k}{\mathbf {R}}_{k}\right) {\mathcal {H}} \ {\mathbf {J}}_{j,k}= & {} \left[ {\mathbf {J}}_{j,k},2{\mathcal {H}}\left( \mu _{j}{\mathbf {R}}_{j}+\mu _{k}{\mathbf {R}}_{k}\right) \right] \\= & {} \left[ {\mathbf {J}}_{j,k},2{\mathcal {H}}\left( \mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) \right] \end{aligned}$$

and therefore

$$\begin{aligned} \left[ {\mathbf {J}}_{j,k},{\mathbf {A}}^{2}-2{\mathcal {H}}\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}\right]= & {} 0. \end{aligned}$$
(D.10)

Using (D.1) we can write

$$\begin{aligned} \left[ {\mathbf {J}}^{2},{\mathbf {A}}_{l}\right]= & {} \displaystyle \sum _{j<k}\left[ {\mathbf {J}}_{j,k}^{2},{\mathbf {A}}_{l}\right] = \displaystyle \sum _{j<k}{\mathbf {J}}_{j,k}\left[ {\mathbf {J}}_{j,k},{\mathbf {A}}_{l}\right] +\left[ {\mathbf {J}}_{j,k},{\mathbf {A}}_{l}\right] {\mathbf {J}}_{j,k}\\= & {} \displaystyle \sum _{k=l+1}^{N}{\mathbf {J}}_{l,k}\left[ {\mathbf {J}}_{l,k},{\mathbf {A}}_{l}\right] +\left[ {\mathbf {J}}_{l,k},{\mathbf {A}}_{l}\right] {\mathbf {J}}_{l,k} +\displaystyle \sum _{k=1}^{l-1}{\mathbf {J}}_{k,l}\left[ {\mathbf {J}}_{k,l},{\mathbf {A}}_{l}\right] +\left[ {\mathbf {J}}_{k,l},{\mathbf {A}}_{l}\right] {\mathbf {J}}_{k,l}. \end{aligned}$$

By means of (D.1), we see that

$$\begin{aligned} {\mathbf {J}}_{l,k}\left[ {\mathbf {J}}_{l,k},{\mathbf {A}}_{l}\right] +\left[ {\mathbf {J}}_{l,k},{\mathbf {A}}_{l}\right] {\mathbf {J}}_{l,k}= & {} i\left\{ {\mathbf {J}}_{l,k},{\mathbf {A}}_{k}\right\} +2i\mu _{l}{\mathbf {R}}_{l}\left[ {\mathbf {A}}_{k},{\mathbf {J}}_{l,k}\right] .\\ {\mathbf {J}}_{k,l}\left[ {\mathbf {J}}_{k,l},{\mathbf {A}}_{l}\right] +\left[ {\mathbf {J}}_{k,l},{\mathbf {A}}_{l}\right] {\mathbf {J}}_{k,l}= & {} i\left\{ {\mathbf {J}}_{l,k},{\mathbf {A}}_{k}\right\} +2i\mu _{l}{\mathbf {R}}_{l}\left[ {\mathbf {A}}_{k},{\mathbf {J}}_{l,k}\right] . \end{aligned}$$

Then

$$\begin{aligned} \left[ {\mathbf {J}}^{2},{\mathbf {A}}_{l}\right]= & {} \displaystyle \sum _{k=1, k\ne l}^{N}i\left\{ {\mathbf {J}}_{l,k},{\mathbf {A}}_{k}\right\} +2i\mu _{l}{\mathbf {R}}_{l}\displaystyle \sum _{k=1, k\ne l}^{N}\left[ {\mathbf {A}}_{k},{\mathbf {J}}_{l,k}\right] \\= & {} \displaystyle \sum _{k=1, k\ne l}^{N}i\left\{ {\mathbf {J}}_{l,k},{\mathbf {A}}_{k}\right\} +2i\mu _{l}{\mathbf {R}}_{l}\displaystyle \sum _{k=1, k\ne l}^{N}i\left( 1+2\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {A}}_{l}. \end{aligned}$$

Therefore

$$\begin{aligned} \left[ {\mathbf {J}}^{2},{\mathbf {A}}_{l}\right]= & {} \displaystyle \sum _{k=1, k\ne l}^{N}i\left\{ {\mathbf {J}}_{l,k},{\mathbf {A}}_{k}\right\} -2(N-1)\mu _{l}{\mathbf {R}}_{l}{\mathbf {A}}_{l}-4\mu _{l}{\mathbf {R}}_{l}\left( \displaystyle \sum _{k=1, k\ne l}^{N}\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {A}}_{l}. \end{aligned}$$
(D.11)

Using (D.9), we can prove

$$\begin{aligned} \left[ {\mathbf {A}}_{l},{\mathbf {A}}^{2}\right]= & {} \displaystyle \sum _{k=1}^{N}\left[ {\mathbf {A}}_{l},{\mathbf {A}}_{k}^{2}\right] = \displaystyle \sum _{k=1}^{N}\left[ {\mathbf {A}}_{l},{\mathbf {A}}_{k}\right] {\mathbf {A}}_{k}+{\mathbf {A}}_{k}\left[ {\mathbf {A}}_{l},{\mathbf {A}}_{k}\right] \nonumber \\= & {} -2i{\mathcal {H}}\displaystyle \sum _{k=1, k\ne l}^{N}\left\{ {\mathbf {J}}_{l,k},{\mathbf {A}}_{k}\right\} . \end{aligned}$$
(D.12)

From (D.11) and (D.12) we deduce

$$\begin{aligned} \left[ {\mathbf {A}}^{2}-2{\mathcal {H}}\left( {\mathbf {J}}^{2}+(N-1)\mu _{l}{\mathbf {R}}_{l}+2\mu _{l}{\mathbf {R}}_{l}\displaystyle \sum _{k=1, k\ne l}^{N}\mu _{k}{\mathbf {R}}_{k}\right) ,{\mathbf {A}}_{l}\right]= & {} 0. \end{aligned}$$
(D.13)

Since \(\left[ \mu _{k}{\mathbf {R}}_{k},{\mathbf {A}}_{l}\right] =0; \ k\ne l,\) we get

$$\begin{aligned} \displaystyle \sum _{k=1, k\ne l}\left[ \mu _{k}{\mathbf {R}}_{k},{\mathbf {A}}_{l}\right]= & {} \displaystyle \sum _{j<k, j\ne l, j\ne k}\left[ \mu _{j}\mu _{k}{\mathbf {R}}_{j}{\mathbf {R}}_{k},{\mathbf {A}}_{l}\right] =0. \end{aligned}$$
(D.14)

Multiply (D.14) by \(2{\mathcal {H}}\) and add (D.13) to that equation, we get

$$\begin{aligned} \left[ {\mathbf {C}}_{1},{\mathbf {A}}_{l}\right] =0, \ l=1,\dots ,N, \end{aligned}$$
(D.15)

where

$$\begin{aligned} {\mathbf {C}}_{1}={\mathbf {A}}^{2}-2{\mathcal {H}}\left( {\mathbf {J}}^{2}+(N-1)\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}+2\displaystyle \sum _{j<k}\mu _{j}\mu _{k} {\mathbf {R}}_{j}{\mathbf {R}}_{k}\right) . \end{aligned}$$
(D.16)

Now using (D.10), Proposition 5.5 and writing

$$\begin{aligned} {\mathbf {C}}_{1}={\mathbf {A}}^{2}-2{\mathcal {H}}\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}-2{\mathcal {H}}{\mathbf {C}} \end{aligned}$$

we deduce

$$\begin{aligned} \left[ {\mathbf {C}}_{1},{\mathbf {J}}_{j,k}\right] =0, \ j<k. \end{aligned}$$
(D.17)

Appendix: Proof of Theorem 5.2

It suffices to show (4) and (6). Let us derive the commutation relation between \({\mathbf {J}}_{j,k}\) with \({\mathbf {U}}_{l}.\) We use the representation (5.25) for \({\mathbf {U}}_{l},\) then

$$\begin{aligned} \sqrt{2|{\mathcal {E}}|}\left[ {\mathbf {J}}_{j,k},{\mathbf {U}}_{l}\right]= & {} (1/2)\left[ {\mathbf {J}}_{j,k},{\mathbf {x}}_{l}{\mathbf {p}}^{2}\right] - \left[ {\mathbf {J}}_{j,k},{\mathbf {p}}_{l}({\mathbf {x}}\cdot {\mathbf {p}})\right] +i((N-3)/2)\left[ {\mathbf {J}}_{j,k},{\mathbf {p}}_{l}\right] \\&+i\left[ {\mathbf {J}}_{j,k},{\mathbf {p}}_{l}(\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N})\right] +{\mathcal {E}}\left[ {\mathbf {J}}_{j,k},{\mathbf {x}}_{l}\right] . \end{aligned}$$

Using (5.17) and (2.20)

$$\begin{aligned} \left[ {\mathbf {J}}_{j,k}, {\mathbf {x}}_{l}{\mathbf {p}}^{2}\right]= & {} \left[ {\mathbf {J}}_{j,k}, {\mathbf {x}}_{l}\right] {\mathbf {p}}^{2}+{\mathbf {x}}_{l}\left[ {\mathbf {J}}_{j,k}, {\mathbf {p}}^{2}\right] \\ {}= & {} i{\mathbf {x}}_{k}(1+2\mu _{j}{\mathbf {R}}_{j})\delta _{j}^{l}{\mathbf {p}}^{2} -i{\mathbf {x}}_{j}(1+2\mu _{k}{\mathbf {R}}_{k})\delta _{l}^{k}{\mathbf {p}}^{2}. \end{aligned}$$

By (2.20), (3.12) and (3.13)

$$\begin{aligned} \left[ {\mathbf {J}}_{j,k}, {\mathbf {p}}_{l}\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) \right]= & {} \left[ {\mathbf {J}}_{j,k}, {\mathbf {p}}_{l}\right] \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) +{\mathbf {p}}_{l}\left[ {\mathbf {J}}_{j,k}, \left( {\mathbf {x}}\cdot {\mathbf {p}}\right) \right] \\= & {} i(1+2\mu _{j}{\mathbf {R}}_{j})\delta _{j}^{l}{\mathbf {p}}_{k}\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) - i(1+2\mu _{k}{\mathbf {R}}_{k})\delta _{k}^{l}{\mathbf {p}}_{j}\left( {\mathbf {x}}\cdot {\mathbf {p}}\right) \\&- 2i{\mathbf {p}}_{l}\left( \mu _{j}{\mathbf {R}}_{j}+\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {J}}_{j,k}. \end{aligned}$$

By (2.20),

$$\begin{aligned} \left[ {\mathbf {J}}_{j,k}, {\mathbf {p}}_{l}\right]= & {} i(1+2\mu _{j}{\mathbf {R}}_{j})\delta _{j}^{l}{\mathbf {p}}_{k}- i(1+2\mu _{k}{\mathbf {R}}_{k})\delta _{k}^{l}{\mathbf {p}}_{j}.\\ \left[ {\mathbf {J}}_{j,k}, {\mathbf {x}}_{l}\right]= & {} i{\mathbf {x}}_{k}(1+2\mu _{j}{\mathbf {R}}_{j})\delta _{j}^{l} -i{\mathbf {x}}_{j}(1+2\mu _{k}{\mathbf {R}}_{k})\delta _{l}^{k}. \end{aligned}$$

Using (5.13) and (5.14)

$$\begin{aligned} \left[ {\mathbf {J}}_{j,k},{\mathbf {p}}_{l}(\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N})\right]= & {} \left( i(1+2\mu _{j}{\mathbf {R}}_{j})\delta _{j}^{l}{\mathbf {p}}_{k}- i(1+2\mu _{k}{\mathbf {R}}_{k})\delta _{k}^{l}{\mathbf {p}}_{j}\right) \\&\displaystyle \sum _{k=1}^{N}\mu _{k}{\mathbf {R}}_{k}-2{\mathbf {p}}_{l}\left( \mu _{j}{\mathbf {R}}_{j}+\mu _{k}{\mathbf {R}}_{k}\right) {\mathbf {J}}_{j,k}. \end{aligned}$$

Then

$$\begin{aligned} \left[ {\mathbf {J}}_{j,k},{\mathbf {U}}_{l}\right]= & {} \left\{ \begin{array}{lr} 0, &{} j\ne k \ne l. \\ i(1+2\mu _{j}{\mathbf {R}}_{j}) {\mathbf {U}}_{k}, &{} j\ne k, j=l. \\ -i(1+2\mu _{k}{\mathbf {R}}_{k}) {\mathbf {U}}_{j}, &{} j\ne k, l=k. \end{array} \right. \end{aligned}$$

(6) We proceed as in the proof of (5.23). We use the representation (5.25) for \({\mathbf {U}}_{j},\) we get

$$\begin{aligned} 2|{\mathcal {E}}| \ \left[ {\mathbf {U}}_{j},{\mathbf {U}}_{k}\right] =({\mathcal {E}}/2)(a_{j,k}-a_{k,j})-{\mathcal {E}}(b_{j,k}-b_{k,j}), \end{aligned}$$

where

$$\begin{aligned} a_{j,k}= & {} \left[ {\mathbf {x}}_{j}{\mathbf {p}}^{2}, {\mathbf {x}}_{k}\right] ,\\ b_{j,k}= & {} \left[ {\mathbf {p}}_{j}\left( ({\mathbf {x}}\cdot {\mathbf {p}})-i\left( \frac{N-3}{2}+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) \right) ,{\mathbf {x}}_{k}\right] . \end{aligned}$$

Using (3.9)

$$\begin{aligned} a_{j,k}= & {} {\mathbf {x}}_{j}\left[ {\mathbf {p}}^{2}, {\mathbf {x}}_{k}\right] =-2i{\mathbf {x}}_{j}{\mathbf {p}}_{k}. \end{aligned}$$

From (2.20) and (3.12)

$$\begin{aligned} b_{j,k}= & {} \left[ {\mathbf {p}}_{j}({\mathbf {x}}\cdot {\mathbf {p}}),{\mathbf {x}}_{k}\right] -i\left[ {\mathbf {p}}_{j}\left( \frac{N-3}{2}+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) ,{\mathbf {x}}_{k}\right] .\\= & {} {\mathbf {p}}_{j}\left[ ({\mathbf {x}}\cdot {\mathbf {p}}), {\mathbf {x}}_{k}\right] +\left[ {\mathbf {p}}_{j}, {\mathbf {x}}_{k}\right] ({\mathbf {x}}\cdot {\mathbf {p}})-i{\mathbf {p}}_{j}\left[ ((N-3)/2 +\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}),{\mathbf {x}}_{k}\right] \\- & {} i\left[ {\mathbf {p}}_{j}, {\mathbf {x}}_{k}\right] ((N-3)/2 +\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N})\\= & {} -i{\mathbf {p}}_{j}{\mathbf {x}}_{k}-i(1+2\mu _{j}{\mathbf {R}}_{j})\delta _{j}^{k}({\mathbf {x}}\cdot {\mathbf {p}})-(1+2\mu _{j}{\mathbf {R}}_{j})\delta _{j}^{k}((N-3)/2 +\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N})\\= & {} -i{\mathbf {x}}_{k}{\mathbf {p}}_{j}-(1+2\mu _{j}{\mathbf {R}}_{j})\delta _{j}^{k}\\&\quad -i(1+2\mu _{j}{\mathbf {R}}_{j})\delta _{j}^{k}({\mathbf {x}}\cdot {\mathbf {p}})-(1+2\mu _{j}{\mathbf {R}}_{j})\delta _{j}^{k}((N-3)/2 +\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}). \end{aligned}$$

Then

$$\begin{aligned} b_{j,k}-b_{k,j}=i{\mathbf {x}}_{j}{\mathbf {p}}_{k}-i{\mathbf {x}}_{k}{\mathbf {p}}_{j}, \end{aligned}$$

and

$$\begin{aligned} \left[ {\mathbf {U}}_{j},{\mathbf {U}}_{k}\right] =-i\frac{{\mathcal {E}}}{|{\mathcal {E}}|}({\mathbf {x}}_{j}{\mathbf {p}}_{k}-{\mathbf {x}}_{k}{\mathbf {p}}_{j})=-i\sigma \ {\mathbf {J}}_{j,k}. \end{aligned}$$

Appendix: Proof of Theorem 5.3

It suffices to show (5.30), (5.31) and

$$\begin{aligned} \left[ {\mathbf {T}}_{3}, {\mathbf {V}}_{j}\right]= & {} 0, \ j=1,\dots ,N.\\ \left[ {\mathbf {T}}_{3}, {\mathbf {J}}_{j,k}\right]= & {} 0, \ 1\le j<k\le N. \end{aligned}$$

(5.30) follows immediately from (5.26). From (3.20) and (3.21) we have the identity

$$\begin{aligned} {\mathbf {J}}^{2}+{\mathbf {T}}_{1}^{2}+{\mathbf {T}}_{2}^{2}={\mathbf {T}}_{3}^{2}-\left( \frac{N-1}{2}+\displaystyle \sum _{j=1}^{N}\mu _{j}{\mathbf {R}}_{j}\right) ^{2}+\left( \frac{N-1}{2}+\displaystyle \sum _{j=1}^{N}\mu _{j}{\mathbf {R}}_{j}\right) . \end{aligned}$$

Substituting \(\alpha =\beta =1\) into Eq. (5.11), we obtain

$$\begin{aligned} {\mathbf {V}}^{2}={\mathbf {T}}_{1}^{2}+{\mathbf {T}}_{2}^{2}-\left( \frac{N-1}{2}+\displaystyle \sum _{j=1}^{N}\mu _{j}{\mathbf {R}}_{j}\right) . \end{aligned}$$

By inserting the previous relations into (5.30) we obtain

$$\begin{aligned} {\mathbf {C}}= & {} {\mathbf {T}}_{3}^{2}-\left( \left( \frac{N-1}{2}\right) ^{2}+\displaystyle \sum _{j=1}^{N}\mu _{j}^{2}\right) . \end{aligned}$$

From the definition of \({\mathbf {J}}_{j,k}, \ 1\le j<k\le N,\)

$$\begin{aligned} \left[ {\mathbf {J}}_{j,k},{\mathbf {T}}_{3}\right]= & {} \left[ {\mathbf {X}}_{j}{\mathbf {P}}_{k}-{\mathbf {X}}_{k}{\mathbf {P}}_{j}, {\mathbf {T}}_{3}\right] \\= & {} {\mathbf {X}}_{j}\left[ {\mathbf {P}}_{k}, {\mathbf {T}}_{3}\right] +\left[ {\mathbf {X}}_{j}, {\mathbf {T}}_{3}\right] {\mathbf {P}}_{k} -{\mathbf {X}}_{k}\left[ {\mathbf {P}}_{j}, {\mathbf {T}}_{3}\right] -\left[ {\mathbf {X}}_{k}, {\mathbf {T}}_{3}\right] {\mathbf {P}}_{j}. \end{aligned}$$

Using (2.21), (3.9) and the fact that \([a,bc]=[a,b]c+b[a,c],\) then

$$\begin{aligned} \left[ {\mathbf {X}}_{j}, {\mathbf {T}}_{3}\right]= & {} (1/2)\left[ {\mathbf {X}}_{j},\ R {\mathbf {P}}^{2}+R\right] =(1/2)R\left[ {\mathbf {X}}_{j}, {\mathbf {P}}^{2}\right] =iR{\mathbf {P}}_{j}.\\ \left[ {\mathbf {P}}_{k}, {\mathbf {T}}_{3}\right]= & {} (1/2)\left[ {\mathbf {P}}_{k},\ R {\mathbf {P}}^{2}+R\right] =(1/2)\left[ {\mathbf {P}}_{k}, R\right] \left( 1+{\mathbf {P}}^{2}\right) \\= & {} -(i/2)R^{-1}{\mathbf {X}}_{k}\left( 1+{\mathbf {P}}^{2}\right) . \end{aligned}$$

Collect these results to obtain

$$\begin{aligned} \left[ {\mathbf {J}}_{j,k},{\mathbf {T}}_{3}\right] =0, \ 1\le j<k\le N. \end{aligned}$$

From the definitions (3.8) and (5.29),

$$\begin{aligned} \left[ {\mathbf {V}}_{j},{\mathbf {T}}_{3}\right] =\frac{1}{4}\left[ {\mathbf {X}}_{j}{\mathbf {P}}^{2}, R\right] +\frac{1}{4}\left[ {\mathbf {X}}_{j}{\mathbf {P}}^{2}, R{\mathbf {P}}^{2}\right] -\frac{1}{4}\left[ {\mathbf {X}}_{j}, R{\mathbf {P}}^{2}\right] -\frac{a_{1}}{2}-\frac{a_{2}}{2}, \end{aligned}$$

where

$$\begin{aligned} a_{1}= & {} \left[ {\mathbf {P}}_{j}\Bigr ({\mathbf {X}}\cdot {\mathbf {P}}-i\left( (N-3)/2+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) \Bigl ),R\right] ,\\ a_{2}= & {} \left[ {\mathbf {P}}_{j}\Bigr ({\mathbf {X}}\cdot {\mathbf {P}}-i\left( (N-3)/2+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) \Bigl ),R{\mathbf {P}}^{2}\right] . \end{aligned}$$

Using (3.9) and (3.10)

$$\begin{aligned} \left[ {\mathbf {X}}_{j}{\mathbf {P}}^{2}, R\right]= & {} {\mathbf {X}}_{j}\left[ {\mathbf {P}}^{2}, R\right] \\= & {} -2i R^{-1}{\mathbf {X}}_{j}\Bigr ({\mathbf {X}}\cdot {\mathbf {P}}-i\left( (N-1)/2+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) \Bigl ),\\ \left[ {\mathbf {X}}_{j}{\mathbf {P}}^{2}, R{\mathbf {P}}^{2}\right]= & {} \left( {\mathbf {X}}_{j}{\mathbf {P}}^{2}R-R{\mathbf {P}}^{2}{\mathbf {X}}_{j}\right) {\mathbf {P}}^{2}={\mathbf {X}}_{j}\left[ {\mathbf {P}}^{2}, R\right] {\mathbf {P}}^{2}+R\left[ {\mathbf {X}}_{j},{\mathbf {P}}^{2}\right] {\mathbf {P}}^{2},\\= & {} -2iR^{-1} {\mathbf {X}}_{j}\Bigr ({\mathbf {X}}\cdot {\mathbf {P}}-i\left( (N-1)/2+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) \Bigl ){\mathbf {P}}^{2}\\&+2iR{\mathbf {P}}_{j}{\mathbf {P}}^{2},\\ \left[ {\mathbf {X}}_{j}, R{\mathbf {P}}^{2}\right]= & {} R\left[ {\mathbf {X}}_{j}, {\mathbf {P}}^{2}\right] =2iR{\mathbf {P}}_{j}. \end{aligned}$$

From (2.21) and (3.14)

$$\begin{aligned} a_{1}= & {} \left[ {\mathbf {P}}_{j}\left( {\mathbf {X}}\cdot {\mathbf {P}}\right) , R\right] -i\left[ {\mathbf {P}}_{j} \left( (N-3)/2+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) , R\right] \\= & {} {\mathbf {P}}_{j}\left[ \left( {\mathbf {X}}\cdot {\mathbf {P}}\right) ,R\right] +\left[ {\mathbf {P}}_{j}, R \right] \left( {\mathbf {X}}\cdot {\mathbf {P}}\right) \\&-i\left[ {\mathbf {P}}_{j}, R \right] \left( (N-3)/2+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) \\= & {} -iR{\mathbf {P}}_{j}-iR^{-1}{\mathbf {X}}_{j}\left( {\mathbf {X}}\cdot {\mathbf {P}}\right) -R^{-1}{\mathbf {X}}_{j}\left( (N-1)/2+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) . \end{aligned}$$

It is easy to see that

$$\begin{aligned} a_{2}= & {} \left[ {\mathbf {P}}_{j}\left( {\mathbf {X}}\cdot {\mathbf {P}}\right) , R{\mathbf {P}}^{2}\right] -i\left[ {\mathbf {P}}_{j}\left( (N-3)/2+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) , R{\mathbf {P}}^{2}\right] . \end{aligned}$$

From (2.21), (3.11) and (3.14)

$$\begin{aligned} \left[ {\mathbf {P}}_{j}\left( {\mathbf {X}}\cdot {\mathbf {P}}\right) , R{\mathbf {P}}^{2}\right]= & {} {\mathbf {P}}_{j}R\left[ \left( {\mathbf {X}}\cdot {\mathbf {P}}\right) ,{\mathbf {P}}^{2}\right] +{\mathbf {P}}_{j}\left[ \left( {\mathbf {X}}\cdot {\mathbf {P}}\right) , R\right] {\mathbf {P}}^{2}+\left[ {\mathbf {P}}_{j},R\right] {\mathbf {P}}^{2}\left( {\mathbf {X}}\cdot {\mathbf {P}}\right) \\= & {} iR{\mathbf {P}}_{j}{\mathbf {P}}^{2}-R^{-1}{\mathbf {X}}_{j}{\mathbf {P}}^{2}-iR^{-1}{\mathbf {X}}_{j}\left( {\mathbf {X}}\cdot {\mathbf {P}}\right) {\mathbf {P}}^{2}, \end{aligned}$$

and

$$\begin{aligned}&\left[ {\mathbf {P}}_{j}\left( (N-3)/2+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) , R{\mathbf {P}}^{2}\right] \\&\quad =\left[ {\mathbf {P}}_{j},R\right] {\mathbf {P}}^{2}\left( (N-3)/2+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) \\&\quad =-iR^{-1}{\mathbf {X}}_{j}{\mathbf {P}}^{2}\left( (N-3)/2+\mu _{1}{\mathbf {R}}_{1}+\dots +\mu _{N}{\mathbf {R}}_{N}\right) . \end{aligned}$$

Collecting these results

$$\begin{aligned} \left[ {\mathbf {V}}_{j},{\mathbf {T}}_{3}\right] =0, \ j=1,\dots ,N. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazouani, S. Algebraic approach to the Dunkl–Coulomb problem and Dunkl oscillator in arbitrary dimensions. Anal.Math.Phys. 11, 35 (2021). https://doi.org/10.1007/s13324-020-00470-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-020-00470-4

Keywords

Navigation