Skip to main content
Log in

Potato Seed Decay and Stand Loss is Not Caused by Dickeya Spread during Cutting and Handling of Seed Potatoes

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Soft rot bacteria are the main cause of early seed decay and stand losses in field grown potatoes. These bacteria are present in most surface water and colonize lenticels of early generation seed potatoes and cause disease when conditions are favorable for bacterial growth. Soft rot bacteria, formerly in the genus Erwinia, have been reclassified into the genera Dickeya and Pectobacterium. Because of their ubiquitous association with potato tubers, it is assumed that the soft rot bacteria is spread during handling and planting of seed potatoes and can potentially cause seed decay and blackleg. A soft rot bacterium new to the United States, Dickeya dianthicola was first recognized in 2015 (Secor, unpublished) as the cause of serious stand losses of potatoes in production sites in the eastern US. Replicated and commercial field trials using seed laboratory inoculated and naturally infected with D. dianthicola were conducted in multiple locations to determine spread from infected seed potatoes to healthy seed potatoes during handling and cutting. There is no evidence of increased stand losses or blackleg after simultaneous handling and cutting of Dickeya infected seed potatoes with seed potatoes free of Dickeya. Laboratory trials with labeled soft rot bacteria demonstrated spread of bacteria by cutting knives. There may be other factors that prevent establishment and infection by soft rot bacteria that may spread during seed potato cutting that need to be investigated. We conclude that spread of Dickeya bacteria during handling and cutting of seed potatoes is not a major cause of subsequent seed decay and blackleg resulting in increased stand losses in the field.

Resumen

Las bacterias de pudrición blanda son la principal causa de la descomposición temprana de la semilla y causan pérdidas en papas cultivadas en el campo. Estas bacterias están presentes en la mayoría del agua superficial, colonizan las lenticelas de semillas de papa de generación temprana y causan enfermedad cuando las condiciones son favorables para el crecimiento bacteriano. Las bacterias de pudrición blanda, previamente en el género Erwinia, han sido reclasificadas en los géneros Dickeya y Pectobacterium. Debido a su asociación generalizada con tubérculos de papa, se asume que las bacterias de pudrición blanda se dispersan durante el manejo y la siembra de la semilla, y pueden causar, potencialmente, descomposición de la semilla y la pierna negra. Una bacteria de pudrición blanda nueva en los Estados Unidos, Dickeya dianthicola, se reconoció por primera vez en 2015 (Secor, no publicado) como la causa de serias pérdidas de papas en sitios de producción en el oriente de los EU. Se condujeron repetidos ensayos de campo comerciales usando semilla de laboratorio inoculada y de infección natural con D. dianthicola en múltiples localidades para determinar la dispersión de semillas de papa infectadas a semilla sana, durante el manejo y el corte de tubérculo. No hay evidencia de aumento de pérdidas o de pierna negra después del manejo y corte simultáneos en semilla de papa infectada con Dickeya con semilla libre de Dickeya. Ensayos de laboratorio con bacteria de pudrición blanda marcada demostraron dispersión de la bacteria por vía de las navajas de corte. Pudiera haber otros factores que previenen el establecimiento y la infección por bacteria de pudrición blanda que se pudieran dispersar durante el corte de la semilla de papa que requiera ser investigado. Nosotros concluimos que la dispersión de la bacteria Dickeya durante el manejo y corte de la semilla no es una causa principal de la subsecuente descomposición de la semilla y la pierna negra que resulten en un aumento de pérdidas en el campo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adeolu, M., S. Alnajar, S. Naushad, and R.S. Gupta. 2016. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. International Journal of Systematic and Evolutionary Microbiology 66: 5575–5599.

    Article  CAS  Google Scholar 

  • Agrios, G.N. 2006. Bacterial soft rots. 5th ed. San Diego: Academic Press.

    Google Scholar 

  • Ansermet, M., S. Schaerer, I. Kellenberger, M. Tallant, and B. Dupuis. 2016. Influence of seed-borne and soil-carried inocula of Dickeya spp. on potato plant transpiration and symptom expression. European Journal of Plant Pathology 145: 459–467.

    Article  CAS  Google Scholar 

  • Charkowski, A.O. 2018. The changing face of bacterial soft-rot diseases. Annual Review of Phytopathology 56: 269–288.

    Article  CAS  Google Scholar 

  • Charkowski, A.O., J. Lind, and I. Rubio-Salazar. 2014. Genomics of plant-associated bacteria: the soft rot Enterobacteriaceae. In Genomics of Plant-Associated Bacteria. Gross, Lichens-Park and Kole, eds. Pp37–58. Springer, New York 37–58.

  • Crépin, A., A. Beury-Cirou, C. Barbey, C. Farmer, V. Hélias, J.F. Burini, and J.F. 2012. N-acyl homoserine lactones in diverse Pectobacterium and Dickeya plant pathogens: Diversity, abundance, and involvement in virulence. Sensors (Basel) 12: 3484–3497.

    Article  Google Scholar 

  • Czajkowski, R., W.J.D. Boer, H. Velvis, and J.M. Van der Wolf. 2010. Systemic colonization of potato plants by a soilborne, green fluorescent protein-tagged strain of Dickeya sp. biovar 3. Phytopathology. 100: 134–142.

    Article  CAS  Google Scholar 

  • Czajkowski, R., M.C.M. Pérombelon, J.A.V. Veen, and J.M. Van der Wolf. 2011. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: A review. Plant Pathology 60: 999–1013.

    Article  Google Scholar 

  • DeBoer, S.H. 2008. Managing soft rot and ring rot. In Potato Health Management 2nd ed. Pp171–181. D.A. Johnson, ed. APS Press, St. Paul, MN.

  • Dunn, A.K., D.S. Millikan, D.M. Adin, J.L. Bose, and E.V. Stabb. 2006. New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Applied and Environmental Microbiology 72: 802–810.

    Article  CAS  Google Scholar 

  • Gill, E.D., S. Schaerer, and B. Dupuis. 2014. Factors impacting blackleg development caused by Dickeya spp. in the field. European Journal of Plant Pathology 140: 317–327.

    Article  Google Scholar 

  • Gugino, B. K. 2016. Best management practices for soft rot associated with Dickeya in potatoes. Penn State Extension. Available at: https://extension.psu.edu/best-management-practices-for-soft-rot-associated-with-dickeya-in-potatoes.

  • Harrison, M.D. and J.W. Brewer. 1981. Field dispersal of soft rot bacteria. In Phytopathogenic prokaryotes Vol 2 pp 33-52. MS mount and GH Lacy, eds. Academic press.

  • Jiang, H.H., J.J. Hao, S.B. Johnson, R.S. Brueggeman, and G. Secor. 2016. First report of Dickeya dianthicola causing blackleg and bacterial soft rot on potato in Maine. Plant Disease 100: 2320–2320.

    Article  Google Scholar 

  • Ma, X., N.T. Perna, J.D. Glasner, J. Hao, S. Johnson, A.S. Nasaruddin, A.O. Charkowski, S. Wu, Z. Fei, K.L. Perry, P. Stodghill, and B. Swingle. 2019. Complete genome sequence of Dickeya dianthicola ME23, a pathogen causing blackleg and soft rot diseases of potato. Microbiology Resource Announcements. https://doi.org/10.1128/MRA.01526-18.

  • Maldonado, A.F.S., E. Mudge, M.G. Ganzle, and A. Schieber. 2014. Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Research International 65: 27–34.

    Article  Google Scholar 

  • Motyka, A., S. Zoledowska, W. Sledz, and E. Lojkowska. 2017. Molecular methods as tools to control plant diseases caused by Dickeya and Pectobacterium spp: A minireview. New Biotechnology 39: 181–189.

    Article  CAS  Google Scholar 

  • Nassar, A., A. Darrase, M. Lamattre, A. Kotoujansky, C. Dervin, R. Vedel, and Y. Bertheau. 1996. Characterization of Erwinia chrysanthemi by pectinolytic isozyme polymorphism and restriction fragment length polymorphism analysis of PCR-amplified fragments of pel genes. Applied and Environmental Microbiology 62 (7): 2228–2235.

    Article  CAS  Google Scholar 

  • Nolte, P., G.A. Secor, and N.C. Gudmestad. 1987. Wound healing, decay and chemical treatment of cut potato tuber tissue. American Potato Journal 64: 1–9.

    Article  Google Scholar 

  • Parkinson, N., P. Devos, M. Pirhonen, and J. Elphinstone. 2014. Dickeya aquatica sp. nov. isolated from waterways. International Journal of Systematic and Evolutionary Microbiology. 64: 2264–2266.

    Article  CAS  Google Scholar 

  • Pérombelon, M.C.M. and G.P.C. Salmond. 1995. Bacterial soft rots In: U.S Singh, R.P. Singh, K. Kohmoto, (eds) Pathogenesis and host specificity in plant diseases: Histopathological, biochemical, genetic and molecular bases, volume 1 pp 1-20. Pergamon press, Great Britain.

  • Powelson, M.L. and G.A. Franc. 2001. Blackleg, aerial stem rot and tuber soft rot. In compendium of potato diseases 2nd ed. Pp 10-11. APS press, St. Paul., MN.

  • Rivera-Varas, V.V., J. Hao, S.B. Johnson, and G.A. Secor. 2017. Assessing latent infection of seed potato tubers with Dickey dianthicola. Am J Potato Res 95: 224–225 (abstr).

    Google Scholar 

  • Rodriguez de Soltillo, D., M. Hadley, and C. Wolf-Hall. 1998. Potato peel extract a nonmutagenic antioxidant with potential antimicrobial activity. Journal of Food Science 63: 1–4.

    Article  Google Scholar 

  • Samson, R., J.B. Legendre, R. Christen, M. Fischer-Le Saux, W. Achouak, and L. Gardan. 2005. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. International Journal of Systematic and Evolutionary Microbiology 55: 1415–1427.

    Article  CAS  Google Scholar 

  • Tian, Y., Y. Zhao, X. Yuan, J. Yi, J. Fan, and Z. Xu. 2016. Dickeya fangzhongdai sp. nov., a plant-pathogenic bacterium isolated from pear trees (Pyrus pyrifolia). International Journal of Systematic and Evolutionary Microbiology 66: 2831–2835.

    Article  CAS  Google Scholar 

  • Toth, I.K., J.M. Van der Wolf, G. Saddler, E. Lojkowska, V. Hélias, and M. Pirhonen. 2011. Dickeya species: An emerging problem for potato production in Europe. Plant Pathology. 60: 385–399.

    Article  Google Scholar 

  • Tsror, L., O. Erlich, M. Hazanovsky, B. Ben Daniel, U. Zig, and S. Lebiush. 2012. Detection of Dickeya spp. latent infection in potato seed tubers using PCR or ELISA and correlation with disease incidence in commercial field crops under hot-climate conditions. Plant Pathology 61: 161–168.

    Article  CAS  Google Scholar 

  • USDA-NRCS Soil Survey Division (USDA-NRCS). 2017. Official soil series descriptions view by name. . http://soilseries.sc.egov.usda.gov.

  • Van der Wolf, J.M., E.H. Nijhuis, M.J. Kowalewska, G.S. Saddler, N. Parkinson, and J.G. Elphinstone. 2014. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). International Journal of Systematic and Evolutionary Microbiology 64: 768–774.

    Article  Google Scholar 

  • Winslow, C.E., J. Broadhurst, R.E. Buchanan, C. Krumwiede, L.A. Rogers, and G.H. Smith. 1920. The families and genera of the Bacteria: Final report of the Committee of the Society of bacteriologists on characterization and classification of bacterial types. Journal of Bacteriology 5: 191–229.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Black Gold Farms for providing field research sites and the people to help maintain and monitor the trials. We especially than John Nordgaard for his ideas and support of this work. This research was supported by SCRI grant number 2017-51181-26827 from the USDA National Institute of Food and Agriculture. All experiments comply with the current laws of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Secor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Secor, G., Rivera-Varas, V., Johnson, S. et al. Potato Seed Decay and Stand Loss is Not Caused by Dickeya Spread during Cutting and Handling of Seed Potatoes. Am. J. Potato Res. 98, 64–71 (2021). https://doi.org/10.1007/s12230-020-09818-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-020-09818-9

Keywords

Navigation