To read this content please select one of the options below:

Simulations of micropolar nanofluid-equipped natural convective-driven flow in a cavity

Naeem Ullah (Department of Mathematics, Quaid-I-Azam University, Islamabad, Pakistan)
Sohail Nadeem (Department of Mathematics, Quaid-I-Azam University, Islamabad, Pakistan)
Luthais McCash (Department of Mathematics, University of Leicester, Leicester, UK)
Anber Saleem (Department of Anatomy, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan)
Alibek Issakhov (Department of Mathematical and Computer Modeling, Al-Farabi Kazakh National University, Almaty, Kazakhstan)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 6 January 2021

Issue publication date: 10 August 2021

124

Abstract

Purpose

This paper aims to focus on the natural convective flow analysis of micropolar nanofluid fluid in a rectangular vertical container. A heated source is placed in the lower wall to generate the internal flow. In further assumptions, the left/right wall are kept cool, while the upper and lower remaining portions are insulated. Free convection prevails in the regime because of thermal difference in-between the lower warmer and upper colder region.

Design/methodology/approach

The physical setup owns mathematical framework in-terms of non-linear partial differential equations. For the solution purpose of the differential system, finite volume method is adopted. The interesting features of the flow along with thermal transportation involve both translational and rotational movement of fluid particles.

Findings

Performing the simulations towards flow controlling variables the outputs are put together in contour maps and line graphs. It is indicated that the variations in flow profile mass concentration and temperature field augments at higher Rayleigh parameter because of stronger buoyancy effects. Higher viscosity coefficient implies decrease in flow and thermal transportation. Further, the average heat transfer rate also grows by increasing both the Rayleigh parameter and heated source length.

Originality/value

To the best of the authors’ knowledge, no such study has been addressed yet. Further, the results are validated by comparing with previously published work.

Keywords

Citation

Naeem Ullah, Nadeem, S., McCash, L., Saleem, A. and Issakhov, A. (2021), "Simulations of micropolar nanofluid-equipped natural convective-driven flow in a cavity", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 31 No. 8, pp. 2640-2659. https://doi.org/10.1108/HFF-08-2020-0504

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles