Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

γ-Glutamylcyclotransferase, a novel regulator of HIF-1α expression, triggers aerobic glycolysis

Abstract

Metabolic reprogramming leading to aerobic glycolysis, termed the “Warburg effect,” is a critical property of cancer cells. However, the precise mechanisms underlying this phenomenon are not fully understood. A growing body of evidence indicates that γ-glutamylcyclotransferase (GGCT), an enzyme involved in glutathione homeostasis that is highly expressed in many types of cancer, represents a promising therapeutic target. In this study, we identified GGCT as a novel regulator of hypoxia-inducible factor-1α (HIF-1α), a transcription factor that plays a role in hypoxia adaptation promoting aerobic glycolysis. In multiple human cancer cell lines, depletion of GGCT downregulated HIF-1α at the mRNA and protein levels. Conversely, in NIH3T3 mouse fibroblasts, overexpression of GGCT upregulated HIF-1α under normoxia. Moreover, depletion of GGCT downregulated HIF-1α downstream target genes involved in glycolysis, whereas overexpression of GGCT upregulated those genes. Metabolomic analysis revealed that modulation of GGCT expression induced a metabolic switch from the citric acid cycle to glycolysis under normoxia. In addition, we found that GGCT regulates expression of HIF-1α protein via the AMPK–mTORC1–4E-BP1 pathway in PC3 cells. Thus GGCT regulates the expression of HIF-1α in cancer cells, causing a switch to glycolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GGCT regulates the expression of HIF-1α.
Fig. 2: GGCT regulates the expression of HIF-1α downstream target genes.
Fig. 3: GGCT promotes aerobic glycolysis.
Fig. 4: Alteration of GGCT expression leads to an aberrant AMP:ATP ratio.
Fig. 5: GGCT regulates HIF-1α protein expression via the AMPK–mTORC1–4E-BP1 pathway in PC3 cells.
Fig. 6: GGCT depletion downregulates HIF-1α expression by inhibiting multiple signaling cascades.
Fig. 7: Treatment of GGCT inhibitor downregulates HIF-1α in a mouse xenograft model of PC3 cells.

Similar content being viewed by others

References

  1. Ngo DC, Ververis K, Tortorella SM, Karagiannis TC. Introduction to the molecular basis of cancer metabolism and the Warburg effect. Mol Biol Rep. 2015;42:819–23.

    Article  CAS  PubMed  Google Scholar 

  2. Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest. 2013;123:3664–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat. 2018;38:1–11.

    Article  PubMed  Google Scholar 

  4. Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol. 2014;49:1–15.

    Article  CAS  PubMed  Google Scholar 

  5. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12:5447–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim JW, Gao P, Dang CV. Effects of hypoxia on tumor metabolism. Cancer Metastasis Rev. 2007;26:291–8.

    Article  PubMed  Google Scholar 

  7. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7:77–85.

    Article  CAS  PubMed  Google Scholar 

  8. Zeng L, Morinibu A, Kobayashi M, Zhu Y, Wang X, Goto Y, et al. Aberrant IDH3α expression promotes malignant tumor growth by inducing HIF-1-mediated metabolic reprogramming and angiogenesis. Oncogene 2015;34:4758–66.

    Article  CAS  PubMed  Google Scholar 

  9. Fang J, Xia C, Cao Z, Zheng JZ, Reed E, Jiang BH. Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J. 2005;19:342–53.

    Article  CAS  PubMed  Google Scholar 

  10. Belaiba RS, Bonello S, Zähringer C, Schmidt S, Hess J, Kietzmann T, et al. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaβ in pulmonary artery smooth muscle cells. Mol Biol Cell. 2007;18:4691–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang XM, Wang YS, Zhang J, Li Y, Xu JF, Zhu J, et al. Role of PI3K/Akt and MEK/ERK in mediating hypoxia-induced expression of HIF-1alpha and VEGF in laser-induced rat choroidal neovascularization. Invest Ophthalmol Vis Sci. 2009;50:1873–9.

    Article  PubMed  Google Scholar 

  12. Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39:171–83.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kageyama S, Isono T, Iwaki H, Wakabayashi Y, Okada Y, Kontani K, et al. Identification by proteomic analysis of calreticulin as a marker for bladder cancer and evaluation of the diagnostic accuracy of its detection in urine. Clin Chem. 2004;50:857–66.

    Article  CAS  PubMed  Google Scholar 

  14. Kageyama S, Iwaki H, Inoue H, Isono T, Yuasa T, Nogawa M, et al. A novel tumor-related protein, C7orf24, identified by proteome differential display of bladder urothelial carcinoma. Proteomics Clin Appl. 2007;1:192–9.

    Article  CAS  PubMed  Google Scholar 

  15. Gromov P, Gromova I, Friis E, Timmermans-Wielenga V, Rank F, Simon R, et al. Proteomic profiling of mammary carcinomas identifies C7orf24, a gamma-glutamyl cyclotransferase, as a potential cancer biomarker. J Proteome Res. 2010;9:3941–53.

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Wu T, Wang Y, Yang L, Hu C, Chen L, et al. γ-Glutamyl cyclotransferase contributes to tumor progression in high grade serous ovarian cancer by regulating epithelial-mesenchymal transition via activating PI3K/AKT/mTOR pathway. Gynecol Oncol. 2018;149:163–72.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang Z, Zhang C, Gan L, Jia Y, Xiong Y, Chen Y, et al. iTRAQ-based quantitative proteomics approach identifies novel diagnostic biomarkers that were essential for glutamine metabolism and redox homeostasis for gastric cancer. Proteomics Clin Appl. 2019;13:e1800038.

    Article  PubMed  Google Scholar 

  18. Uejima D, Nishijo K, Kajita Y, Ishibe T, Aoyama T, Kageyama S, et al. Involvement of cancer biomarker C7orf24 in the growth of human osteosarcoma. Anticancer Res. 2011;31:1297–305.

    CAS  PubMed  Google Scholar 

  19. Takemura K, Kawachi H, Eishi Y, Kitagaki K, Negi M, Kobayashi M, et al. γ-Glutamylcyclotransferase as a novel immunohistochemical biomarker for the malignancy of esophageal squamous tumors. Hum Pathol. 2014;45:331–41.

    Article  CAS  PubMed  Google Scholar 

  20. Shen SH, Yu N, Liu XY, Tan GW, Wang ZX. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling. Biochem Biophys Res Commun. 2016;471:616–20.

    Article  CAS  PubMed  Google Scholar 

  21. Oakley AJ, Yamada T, Liu D, Coggan M, Clark AG, Board PG. The identification and structural characterization of C7orf24 as gamma-glutamyl cyclotransferase. An essential enzyme in the gamma-glutamyl cycle. J Biol Chem. 2008;283:22031–42.

    Article  CAS  PubMed  Google Scholar 

  22. Kageyama S, Hanada E, Ii H, Tomita K, Yoshiki T, Kawauchi A. Gamma-glutamylcyclotransferase: a novel target molecule for cancer diagnosis and treatment. Biomed Res Int. 2015;2015:345219.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kageyama S, Ii H, Taniguchi K, Kubota S, Yoshida T, Isono T, et al. Mechanisms of tumor growth inhibition by depletion of γ-glutamylcyclotransferase (GGCT): a novel molecular target for anticancer therapy. Int J Mol Sci. 2018;19:E2054.

    Article  PubMed  Google Scholar 

  24. Hama S, Arata M, Nakamura I, Kasetani T, Itakura S, Tsuchiya H, et al. Prevention of tumor growth by needle-free jet injection of anti-C7orf24 siRNA. Cancer Gene Ther. 2012;19:553–7.

    Article  CAS  PubMed  Google Scholar 

  25. Ran R, Liu Y, Gao H, Kuang Q, Zhang Q, Tang J, et al. PEGylated hyaluronic acid-modified liposomal delivery system with anti-γ-glutamylcyclotransferase siRNA for drug-resistant MCF-7 breast cancer therapy. J Pharm Sci. 2015;104:476–84.

    Article  CAS  PubMed  Google Scholar 

  26. He Z, Wang S, Shao Y, Zhang J, Wu X, Chen Y, et al. Ras downstream effector GGCT alleviates oncogenic stress. iScience. 2019;19:256–66.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ii H, Yoshiki T, Hoshiya N, Uenishi J. Synthesis and GGCT inhibitory activity of N-glutaryl-L-alanine analogues. Chem Pharm Bull. 2016;64:785–92.

    Article  CAS  Google Scholar 

  28. Yoshiya T, Ii H, Tsuda S, Mochizuki M, Kageyama S, Yoshiki T. Design of fluorogenic probes and fluorescent-tagged inhibitors for γ-glutamyl cyclotransferase. J Pept Sci. 2017;23:618–23.

    Article  CAS  PubMed  Google Scholar 

  29. Ii H, Yoshiya T, Nakata S, Taniguchi K, Hidaka K, Tsuda S, et al. A novel prodrug of a γ-glutamylcyclotransferase inhibitor suppresses cancer cell proliferation in vitro and inhibits tumor growth in a xenograft mouse model of prostate cancer. ChemMedChem 2018;13:155–63.

    Article  CAS  PubMed  Google Scholar 

  30. Takagi H, Ii H, Kageyama S, Hanada E, Taniguchi K, Yoshiya T, et al. Blockade of γ-glutamylcyclotransferase enhances docetaxel growth inhibition of prostate cancer cells. Anticancer Res. 2019;39:4811–6.

    Article  CAS  PubMed  Google Scholar 

  31. Matsumura K, Nakata S, Taniguchi K, Ii H, Ashihara E, Kageyama S, et al. Depletion of γ-glutamylcyclotransferase inhibits breast cancer cell growth via cellular senescence induction mediated by CDK inhibitor upregulation. BMC Cancer. 2016;16:748.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Taniguchi K, Matsumura K, Ii H, Kageyama S, Ashihara E, Chano T, et al. Depletion of gamma-glutamylcyclotransferase in cancer cells induces autophagy followed by cellular senescence. Am J Cancer Res. 2018;8:650–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Taniguchi K, Matsumura K, Kageyama S, Ii H, Ashihara E, Chano T, et al. Prohibitin-2 is a novel regulator of p21WAF1/CIP1 induced by depletion of γ-glutamylcyclotransferase. Biochem Biophys Res Commun. 2018;496:218–24.

    Article  CAS  PubMed  Google Scholar 

  34. Taniguchi K, Ii H, Kageyama S, Takagi H, Chano T, Kawauchi A, et al. Depletion of gamma-glutamylcyclotransferase inhibits cancer cell growth by activating the AMPK-FOXO3a-p21 axis. Biochem Biophys Res Commun. 2019;517:238–43.

    Article  CAS  PubMed  Google Scholar 

  35. Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33:207–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE. Sci STKE. 2005;2005:re12.

    Article  PubMed  Google Scholar 

  37. Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 2003;144:5179–83.

    Article  CAS  PubMed  Google Scholar 

  38. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10:307–18.

    Article  PubMed  Google Scholar 

  40. Minet E, Arnould T, Michel G, Roland I, Mottet D, Raes M, et al. ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett. 2000;468:53–8.

    Article  CAS  PubMed  Google Scholar 

  41. Lu J, Tan M, Cai Q. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 2015;356:156–64.

    Article  CAS  PubMed  Google Scholar 

  42. Devic S. Warburg effect - a consequence or the cause of carcinogenesis? J Cancer. 2016;7:817–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nagao A, Kobayashi M, Koyasu S, Chow CCT, Harada H. HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. Int J Mol Sci. 2019;20:E238.

    Article  PubMed  Google Scholar 

  44. Doe MR, Ascano JM, Kaur M, Cole MD. Myc posttranscriptionally induces HIF1 protein and target gene expression in normal and cancer cells. Cancer Res. 2012;72:949–57.

    Article  CAS  PubMed  Google Scholar 

  45. Demaria M, Giorgi C, Lebiedzinska M, Esposito G, D’Angeli L, Bartoli A, et al. A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging. 2010;2:823–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. TeSlaa T, Teitell MA. Techniques to monitor glycolysis. Methods Enzymol. 2014;542:91–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dodd KM, Yang J, Shen MH, Sampson JR, Tee AR. mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene 2015;34:2239–50.

    Article  CAS  PubMed  Google Scholar 

  48. Kim MH, Jeong YJ, Cho HJ, Hoe HS, Park KK, Park YY, et al. Delphinidin inhibits angiogenesis through the suppression of HIF-1α and VEGF expression in A549 lung cancer cells. Oncol Rep. 2017;37:777–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science, grant numbers 20K07623 and 16K08722; the Ministry of Education, Culture, Sports, Science and Technology–Supported Program for the Strategic Research Foundation at Private Universities 2015–2019; AMED Grant Number JP19nk0101386; the Takeda Science Foundation; and the Kyoto Pharmaceutical University Fund for the Promotion of Collaborative Research.

Author information

Authors and Affiliations

Authors

Contributions

KT performed most of the experiments, analyzed the data, and wrote the manuscript. S Kageyama and S Kubota performed the metabolome analysis. CM, SA, and HI performed some experiments. S Kageyama, EA, MH, TS, and AK supervised and designed experiments. SN designed the study, supervised the research, and wrote the manuscript. All authors reviewed the manuscript and accepted the final version.

Corresponding author

Correspondence to Susumu Nakata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taniguchi, K., Kageyama, S., Moyama, C. et al. γ-Glutamylcyclotransferase, a novel regulator of HIF-1α expression, triggers aerobic glycolysis. Cancer Gene Ther 29, 37–48 (2022). https://doi.org/10.1038/s41417-020-00287-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-00287-0

This article is cited by

Search

Quick links