Skip to main content
Log in

Mechanisms underlying pathological Ca2+ handling in diseases of the heart

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

A Correction to this article was published on 20 January 2021

This article has been updated

Abstract

Cardiomyocyte contraction relies on precisely regulated intracellular Ca2+ signaling through various Ca2+ channels and transporters. In this article, we will review the physiological regulation of Ca2+ handling and its role in maintaining normal cardiac rhythm and contractility. We discuss how inherited variants or acquired defects in Ca2+ channel subunits contribute to the development or progression of diseases of the heart. Moreover, we highlight recent insights into the role of protein phosphatase subunits and striated muscle preferentially expressed protein kinase (SPEG) in atrial fibrillation, heart failure, and cardiomyopathies. Finally, this review summarizes current drug therapies and new advances in genome editing as therapeutic strategies for the cardiac diseases caused by aberrant intracellular Ca2+ signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

Abbreviations

AC:

Arrhythmogenic cardiomyopathy

AF:

Atrial fibrillation

CaM:

Calmodulin

CASQ3:

Calsequestrin-2

CICR:

Ca2+-induced Ca2+ release

CPVT:

Catecholaminergic polymorphic ventricular tachycardia

DCM:

Dilated cardiomyopathy

EC:

Excitation-coupling

FKBP12.6:

FK506-binding protein-12.6

HCM:

Hypertrophic cardiomyopathy

HF:

Heart failure

JMC:

Junctional membrane complex

LQTS:

Long QT syndrome

LTCC:

L-type Ca2+ channel

NCX:

Na+/Ca2+ exchanger

RyR2:

Ryanodine receptor type-2

SPEG:

Striated muscle preferentially expressed protein kinase

SERCA2a:

Sarco/endoplasmic reticulum Ca2+-ATPase

SR:

Sarcoplasmic reticulum

SUMO-1:

Small ubiquitin-like modifier type-1

References

  1. Abriel H, Wehrens XH, Benhorin J, Kerem B, Kass RS (2000) Molecular pharmacology of the sodium channel mutation D1790G linked to the long-QT syndrome. Circulation 102:921–925. https://doi.org/10.1161/01.cir.102.8.921

    Article  CAS  PubMed  Google Scholar 

  2. Adachi K, Nakai H (2010) A new recombinant adeno-associated virus (Aav)-based random peptide display library system: infection-defective Aav1.9-3 as a novel detargeted platform for vector evolution. Gene Ther Regul 5:31–55. https://doi.org/10.1142/S1568558610000197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS, Schoneich C, Cohen RA (2004) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10:1200–1207. https://doi.org/10.1038/nm1119

    Article  CAS  PubMed  Google Scholar 

  4. Aguilar-Sanchez Y, Rodriguez de Yurre A, Argenziano M, Escobar AL, Ramos-Franco J (2019) Transmural autonomic regulation of cardiac contractility at the intact heart level. Front Physiol 10:773. https://doi.org/10.3389/fphys.2019.00773

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alsina KM, Hulsurkar M, Brandenburg S, Kownatzki-Danger D, Lenz C, Urlaub H, Abu-Taha I, Kamler M, Chiang DY, Lahiri SK, Reynolds JO, Quick AP, Scott L Jr, Word TA, Gelves MD, Heck AJR, Li N, Dobrev D, Lehnart SE, Wehrens XHT (2019) Loss of protein phosphatase 1 regulatory subunit PPP1R3A promotes atrial fibrillation. Circulation 140:681–693. https://doi.org/10.1161/CIRCULATIONAHA.119.039642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anderson ME, Brown JH, Bers DM (2011) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51:468–473. https://doi.org/10.1016/j.yjmcc.2011.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Andrade J, Khairy P, Dobrev D, Nattel S (2014) The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res 114:1453–1468. https://doi.org/10.1161/CIRCRESAHA.114.303211

    Article  CAS  PubMed  Google Scholar 

  8. Asahi M, Kurzydlowski K, Tada M, MacLennan DH (2002) Sarcolipin inhibits polymerization of phospholamban to induce superinhibition of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs). J Biol Chem 277:26725–26728. https://doi.org/10.1074/jbc.C200269200

    Article  CAS  PubMed  Google Scholar 

  9. Ather S, Respress JL, Li N, Wehrens XH (2013) Alterations in ryanodine receptors and related proteins in heart failure. Biochim Biophys Acta 1832:2425–2431. https://doi.org/10.1016/j.bbadis.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  10. Banitt EH, Bronn WR, Coyne WE, Schmid JR (1977) Antiarrhythmics. 2. Synthesis and antiarrhythmic activity of N-(piperidylalkyl)trifluoroethoxybenzamides. J Med Chem 20:821–826. https://doi.org/10.1021/jm00216a016

    Article  CAS  PubMed  Google Scholar 

  11. Batiste SM, Blackwell DJ, Kim K, Kryshtal DO, Gomez-Hurtado N, Rebbeck RT, Cornea RL, Johnston JN, Knollmann BC (2019) Unnatural verticilide enantiomer inhibits type 2 ryanodine receptor-mediated calcium leak and is antiarrhythmic. Proc Natl Acad Sci U S A 116:4810–4815. https://doi.org/10.1073/pnas.1816685116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beavers DL, Wang W, Ather S, Voigt N, Garbino A, Dixit SS, Landstrom AP, Li N, Wang Q, Olivotto I, Dobrev D, Ackerman MJ, Wehrens XH (2013) Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization. J Am Coll Cardiol 62:2010–2019. https://doi.org/10.1016/j.jacc.2013.06.052

    Article  CAS  PubMed  Google Scholar 

  13. Beavers DL, Landstrom AP, Chiang DY, Wehrens XH (2014) Emerging roles of junctophilin-2 in the heart and implications for cardiac diseases. Cardiovasc Res 103:198–205. https://doi.org/10.1093/cvr/cvu151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Belevych AE, Terentyev D, Terentyeva R, Nishijima Y, Sridhar A, Hamlin RL, Carnes CA, Gyorke S (2011) The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovasc Res 90:493–502. https://doi.org/10.1093/cvr/cvr025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Belevych AE, Radwanski PB, Carnes CA, Gyorke S (2013) ‘Ryanopathy’: causes and manifestations of RyR2 dysfunction in heart failure. Cardiovasc Res 98:240–247. https://doi.org/10.1093/cvr/cvt024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Belhassen B, Horowitz LN (1984) Use of intravenous verapamil for ventricular tachycardia. Am J Cardiol 54:1131–1133. https://doi.org/10.1016/s0002-9149(84)80158-7

    Article  CAS  PubMed  Google Scholar 

  17. Bellinger AM, Reiken S, Dura M, Murphy PW, Deng SX, Landry DW, Nieman D, Lehnart SE, Samaru M, LaCampagne A, Marks AR (2008) Remodeling of ryanodine receptor complex causes “leaky” channels: a molecular mechanism for decreased exercise capacity. Proc Natl Acad Sci U S A 105:2198–2202. https://doi.org/10.1073/pnas.0711074105

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205. https://doi.org/10.1038/415198a

    Article  CAS  PubMed  Google Scholar 

  19. Bers DM (2012) Ryanodine receptor S2808 phosphorylation in heart failure: smoking gun or red herring. Circ Res 110:796–799. https://doi.org/10.1161/CIRCRESAHA.112.265579

    Article  CAS  PubMed  Google Scholar 

  20. Bezzerides VJ, Caballero A, Wang S, Ai Y, Hylind RJ, Lu F, Heims-Waldron DA, Chambers KD, Zhang D, Abrams DJ, Pu WT (2019) Gene therapy for catecholaminergic polymorphic ventricular tachycardia by inhibition of ca(2+)/calmodulin-dependent kinase II. Circulation 140:405–419. https://doi.org/10.1161/CIRCULATIONAHA.118.038514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bidwell PA, Liu GS, Nagarajan N, Lam CK, Haghighi K, Gardner G, Cai WF, Zhao W, Mugge L, Vafiadaki E, Sanoudou D, Rubinstein J, Lebeche D, Hajjar R, Sadoshima J, Kranias EG (2018) HAX-1 regulates SERCA2a oxidation and degradation. J Mol Cell Cardiol 114:220–233. https://doi.org/10.1016/j.yjmcc.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  22. Bond RC, Bryant SM, Watson JJ, Hancox JC, Orchard CH, James AF (2017) Reduced density and altered regulation of rat atrial L-type Ca(2+) current in heart failure. Am J Physiol Heart Circ Physiol 312:H384–H391. https://doi.org/10.1152/ajpheart.00528.2016

    Article  PubMed  Google Scholar 

  23. Brandenburg S, Kohl T, Williams GS, Gusev K, Wagner E, Rog-Zielinska EA, Hebisch E, Dura M, Didie M, Gotthardt M, Nikolaev VO, Hasenfuss G, Kohl P, Ward CW, Lederer WJ, Lehnart SE (2016) Axial tubule junctions control rapid calcium signaling in atria. J Clin Invest 126:3999–4015. https://doi.org/10.1172/JCI88241

    Article  PubMed  PubMed Central  Google Scholar 

  24. Britzolaki A, Cronin CC, Flaherty PR, Rufo RL, Pitychoutis PM (2020) Chronic but not acute pharmacological activation of SERCA induces behavioral and neurochemical effects in male and female mice. Behav Brain Res:112984. doi:https://doi.org/10.1016/j.bbr.2020.112984

  25. Broendberg AK, Nielsen JC, Bjerre J, Pedersen LN, Kristensen J, Henriksen FL, Bundgaard H, Jensen HK (2017) Nationwide experience of catecholaminergic polymorphic ventricular tachycardia caused by RyR2 mutations. Heart 103:901–909. https://doi.org/10.1136/heartjnl-2016-310509

    Article  PubMed  Google Scholar 

  26. Bryant SM, Kong CH, Watson J, Cannell MB, James AF, Orchard CH (2015) Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts. J Mol Cell Cardiol 86:23–31. https://doi.org/10.1016/j.yjmcc.2015.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bull R, Finkelstein JP, Galvez J, Sanchez G, Donoso P, Behrens MI, Hidalgo C (2008) Ischemia enhances activation by Ca2+ and redox modification of ryanodine receptor channels from rat brain cortex. J Neurosci 28:9463–9472. https://doi.org/10.1523/JNEUROSCI.2286-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Byrne MJ, Power JM, Preovolos A, Mariani JA, Hajjar RJ, Kaye DM (2008) Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Ther 15:1550–1557. https://doi.org/10.1038/gt.2008.120

    Article  CAS  PubMed  Google Scholar 

  29. Cacheux M, Fauconnier J, Thireau J, Osseni A, Brocard J, Roux-Buisson N, Brocard J, Faure J, Lacampagne A, Marty I (2020) Interplay between triadin and calsequestrin in the pathogenesis of CPVT in the mouse. Mol Ther 28:171–179. https://doi.org/10.1016/j.ymthe.2019.09.012

    Article  CAS  PubMed  Google Scholar 

  30. Campbell H, Aguilar-Sanchez Y, Quick AP, Dobrev D, Wehrens X (2020) SPEG: a key regulator of cardiac calcium homeostasis. Cardiovasc Res. https://doi.org/10.1093/cvr/cvaa290

  31. Campbell HM, Quick AP, Abu-Taha I, Chiang DY, Kramm CF, Word TA, Brandenburg S, Hulsurkar M, Alsina KM, Liu HB, Martin B, Uhlenkamp D, Moore OM, Lahiri SK, Corradini E, Kamler M, Heck AJR, Lehnart SE, Dobrev D, Wehrens XHT (2020) Loss of SPEG inhibitory phosphorylation of ryanodine receptor type-2 promotes atrial fibrillation. Circulation 142:1159–1172. https://doi.org/10.1161/CIRCULATIONAHA.120.045791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cannata A, Ali H, Sinagra G, Giacca M (2020) Gene therapy for the heart lessons learned and future perspectives. Circ Res 126:1394–1414. https://doi.org/10.1161/CIRCRESAHA.120.315855

    Article  CAS  PubMed  Google Scholar 

  33. Carson P, Anand I, O’Connor C, Jaski B, Steinberg J, Lwin A, Lindenfeld J, Ghali J, Barnet JH, Feldman AM, Bristow MR (2005) Mode of death in advanced heart failure: the Comparison of Medical, Pacing, and Defibrillation Therapies in Heart Failure (COMPANION) trial. J Am Coll Cardiol 46:2329–2334. https://doi.org/10.1016/j.jacc.2005.09.016

    Article  PubMed  Google Scholar 

  34. Cerrone M, Montnach J, Lin X, Zhao YT, Zhang M, Agullo-Pascual E, Leo-Macias A, Alvarado FJ, Dolgalev I, Karathanos TV, Malkani K, Van Opbergen CJM, van Bavel JJA, Yang HQ, Vasquez C, Tester D, Fowler S, Liang F, Rothenberg E, Heguy A, Morley GE, Coetzee WA, Trayanova NA, Ackerman MJ, van Veen TAB, Valdivia HH, Delmar M (2017) Plakophilin-2 is required for transcription of genes that control calcium cycling and cardiac rhythm. Nat Commun 8:106. https://doi.org/10.1038/s41467-017-00127-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chelu MG, Sarma S, Sood S, Wang S, van Oort RJ, Skapura DG, Li N, Santonastasi M, Muller FU, Schmitz W, Schotten U, Anderson ME, Valderrabano M, Dobrev D, Wehrens XH (2009) Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest 119:1940–1951. https://doi.org/10.1172/jci37059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen YJ, Chen YC, Wongcharoen W, Lin CI, Chen SA (2008) Effect of K201, a novel antiarrhythmic drug on calcium handling and arrhythmogenic activity of pulmonary vein cardiomyocytes. Br J Pharmacol 153:915–925. https://doi.org/10.1038/sj.bjp.0707564

    Article  CAS  PubMed  Google Scholar 

  37. Chen B, Guo A, Zhang C, Chen R, Zhu Y, Hong J, Kutschke W, Zimmerman K, Weiss RM, Zingman L, Anderson ME, Wehrens XH, Song LS (2013) Critical roles of junctophilin-2 in T-tubule and excitation-contraction coupling maturation during postnatal development. Cardiovasc Res 100:54–62. https://doi.org/10.1093/cvr/cvt180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen X, Zhang X, Gross S, Houser SR, Soboloff J (2019) Acetylation of SERCA2a, another target for heart failure treatment? Circ Res 124:1285–1287. https://doi.org/10.1161/CIRCRESAHA.119.315017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen-Izu Y, Ward CW, Stark W Jr, Banyasz T, Sumandea MP, Balke CW, Izu LT, Wehrens XH (2007) Phosphorylation of RyR2 and shortening of RyR2 cluster spacing in spontaneously hypertensive rat with heart failure. Am J Physiol Heart Circ Physiol 293:H2409–H2417. https://doi.org/10.1152/ajpheart.00562.2007

    Article  CAS  PubMed  Google Scholar 

  40. Chiang DY, Kongchan N, Beavers DL, Alsina KM, Voigt N, Neilson JR, Jakob H, Martin JF, Dobrev D, Wehrens XH, Li N (2014) Loss of microRNA-106b-25 cluster promotes atrial fibrillation by enhancing ryanodine receptor type-2 expression and calcium release. Circ Arrhythm Electrophysiol 7:1214–1222. https://doi.org/10.1161/CIRCEP.114.001973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chiang DY, Li N, Wang Q, Alsina KM, Quick AP, Reynolds JO, Wang G, Skapura D, Voigt N, Dobrev D, Wehrens XH (2014) Impaired local regulation of ryanodine receptor type 2 by protein phosphatase 1 promotes atrial fibrillation. Cardiovasc Res 103:178–187. https://doi.org/10.1093/cvr/cvu123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chiang DY, Lebesgue N, Beavers DL, Alsina KM, Damen JM, Voigt N, Dobrev D, Wehrens XH, Scholten A (2015) Alterations in the interactome of serine/threonine protein phosphatase type-1 in atrial fibrillation patients. J Am Coll Cardiol 65:163–173. https://doi.org/10.1016/j.jacc.2014.10.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chiang DY, Heck AJ, Dobrev D, Wehrens XH (2016) Regulating the regulator: insights into the cardiac protein phosphatase 1 interactome. J Mol Cell Cardiol 101:165–172. https://doi.org/10.1016/j.yjmcc.2016.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chopra N, Yang T, Asghari P, Moore ED, Huke S, Akin B, Cattolica RA, Perez CF, Hlaing T, Knollmann-Ritschel BE, Jones LR, Pessah IN, Allen PD, Franzini-Armstrong C, Knollmann BC (2009) Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation-contraction coupling, and cardiac arrhythmias. Proc Natl Acad Sci U S A 106:7636–7641. https://doi.org/10.1073/pnas.0902919106

    Article  PubMed  PubMed Central  Google Scholar 

  45. Christ T, Boknik P, Wohrl S, Wettwer E, Graf EM, Bosch RF, Knaut M, Schmitz W, Ravens U, Dobrev D (2004) L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation 110:2651–2657. https://doi.org/10.1161/01.CIR.0000145659.80212.6A

    Article  CAS  PubMed  Google Scholar 

  46. Coppini R, Ferrantini C, Mugelli A, Poggesi C, Cerbai E (2018) Altered Ca(2+) and Na(+) homeostasis in human hypertrophic cardiomyopathy: implications for arrhythmogenesis. Front Physiol 9:1391. https://doi.org/10.3389/fphys.2018.01391

    Article  PubMed  PubMed Central  Google Scholar 

  47. Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M, Papagiannis J, Feldkamp MD, Rathi SG, Kunic JD, Pedrazzini M, Wieland T, Lichtner P, Beckmann BM, Clark T, Shaffer C, Benson DW, Kaab S, Meitinger T, Strom TM, Chazin WJ, Schwartz PJ, George AL Jr (2013) Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation 127:1009–1017. https://doi.org/10.1161/CIRCULATIONAHA.112.001216

    Article  CAS  PubMed  Google Scholar 

  48. Cutler MJ, Wan X, Plummer BN, Liu H, Deschenes I, Laurita KR, Hajjar RJ, Rosenbaum DS (2012) Targeted sarcoplasmic reticulum Ca2+ ATPase 2a gene delivery to restore electrical stability in the failing heart. Circulation 126:2095–2104. https://doi.org/10.1161/CIRCULATIONAHA.111.071480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Simone A, De Pasquale M, De Matteis C, Canciello M, Manzo M, Sabino L, Alfano F, Di Mauro M, Campana A, De Fabrizio G, Vitale DF, Turco P, Stabile G (2003) VErapamil plus antiarrhythmic drugs reduce atrial fibrillation recurrences after an electrical cardioversion (VEPARAF study). Eur Heart J 24:1425–1429. https://doi.org/10.1016/s0195-668x(03)00311-7

    Article  PubMed  Google Scholar 

  50. del Monte F, Harding SE, Schmidt U, Matsui T, Kang ZB, Dec GW, Gwathmey JK, Rosenzweig A, Hajjar RJ (1999) Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 100:2308–2311. https://doi.org/10.1161/01.cir.100.23.2308

    Article  PubMed Central  Google Scholar 

  51. Devalla HD, Gelinas R, Aburawi EH, Beqqali A, Goyette P, Freund C, Chaix MA, Tadros R, Jiang H, Le Bechec A, Monshouwer-Kloots JJ, Zwetsloot T, Kosmidis G, Latour F, Alikashani A, Hoekstra M, Schlaepfer J, Mummery CL, Stevenson B, Kutalik Z, de Vries AA, Rivard L, Wilde AA, Talajic M, Verkerk AO, Al-Gazali L, Rioux JD, Bhuiyan ZA, Passier R (2016) TECRL, a new life-threatening inherited arrhythmia gene associated with overlapping clinical features of both LQTS and CPVT. EMBO Mol Med 8:1390–1408. https://doi.org/10.15252/emmm.201505719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dobrev D, Wehrens XH (2014) Role of RyR2 phosphorylation in heart failure and arrhythmias: controversies around ryanodine receptor phosphorylation in cardiac disease. Circ Res 114:1311–1319; discussion 1319. https://doi.org/10.1161/CIRCRESAHA.114.300568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dobrev D, Voigt N, Wehrens XH (2011) The ryanodine receptor channel as a molecular motif in atrial fibrillation: pathophysiological and therapeutic implications. Cardiovasc Res 89:734–743. https://doi.org/10.1093/cvr/cvq324

    Article  CAS  PubMed  Google Scholar 

  54. Dobrev D, Aguilar M, Heijman J, Guichard JB, Nattel S (2019) Postoperative atrial fibrillation: mechanisms, manifestations and management. Nat Rev Cardiol 16:417–436. https://doi.org/10.1038/s41569-019-0166-5

    Article  PubMed  Google Scholar 

  55. Doval HC, Nul DR, Grancelli HO, Varini SD, Soifer S, Corrado G, Dubner S, Scapin O, Perrone SV (1996) Nonsustained ventricular tachycardia in severe heart failure. Independent marker of increased mortality due to sudden death. GESICA-GEMA Investigators. Circulation 94:3198–3203. https://doi.org/10.1161/01.cir.94.12.3198

    Article  CAS  PubMed  Google Scholar 

  56. Drago GA, Colyer J (1994) Discrimination between two sites of phosphorylation on adjacent amino acids by phosphorylation site-specific antibodies to phospholamban. J Biol Chem 269:25073–25077

    Article  CAS  PubMed  Google Scholar 

  57. Dridi H, Kushnir A, Zalk R, Yuan Q, Melville Z, Marks AR (2020) Intracellular calcium leak in heart failure and atrial fibrillation: a unifying mechanism and therapeutic target. Nat Rev Cardiol 17:732–747. https://doi.org/10.1038/s41569-020-0394-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Durham WJ, Wehrens XH, Sood S, Hamilton SL (2007) Diseases associated with altered ryanodine receptor activity. Subcell Biochem 45:273–321. https://doi.org/10.1007/978-1-4020-6191-2_10

    Article  CAS  PubMed  Google Scholar 

  59. El-Armouche A, Boknik P, Eschenhagen T, Carrier L, Knaut M, Ravens U, Dobrev D (2006) Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation 114:670–680. https://doi.org/10.1161/CIRCULATIONAHA.106.636845

    Article  CAS  PubMed  Google Scholar 

  60. Evans DB (1986) Modulation of cAMP: mechanism for positive inotropic action. J Cardiovasc Pharmacol 8(Suppl 9):S22–S29

    Article  CAS  PubMed  Google Scholar 

  61. Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Phys 245:C1–C14. https://doi.org/10.1152/ajpcell.1983.245.1.C1

    Article  CAS  Google Scholar 

  62. Fauconnier J, Thireau J, Reiken S, Cassan C, Richard S, Matecki S, Marks AR, Lacampagne A (2010) Leaky RyR2 trigger ventricular arrhythmias in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 107:1559–1564. https://doi.org/10.1073/pnas.0908540107

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ferrandi M, Barassi P, Tadini-Buoninsegni F, Bartolommei G, Molinari I, Tripodi MG, Reina C, Moncelli MR, Bianchi G, Ferrari P (2013) Istaroxime stimulates SERCA2a and accelerates calcium cycling in heart failure by relieving phospholamban inhibition. Br J Pharmacol 169:1849–1861. https://doi.org/10.1111/bph.12278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Frank KF, Bolck B, Brixius K, Kranias EG, Schwinger RH (2002) Modulation of SERCA: implications for the failing human heart. Basic Res Cardiol 97(Suppl 1):I72–I78. https://doi.org/10.1007/s003950200033

    Article  PubMed  Google Scholar 

  65. Fu Y, Hong T (2016) BIN1 regulates dynamic t-tubule membrane. Biochim Biophys Acta 1863:1839–1847. https://doi.org/10.1016/j.bbamcr.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  66. Galimberti ES, Knollmann BC (2011) Efficacy and potency of class I antiarrhythmic drugs for suppression of Ca2+ waves in permeabilized myocytes lacking calsequestrin. J Mol Cell Cardiol 51:760–768. https://doi.org/10.1016/j.yjmcc.2011.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Garbino A, van Oort RJ, Dixit SS, Landstrom AP, Ackerman MJ, Wehrens XH (2009) Molecular evolution of the junctophilin gene family. Physiol Genomics 37:175–186. https://doi.org/10.1152/physiolgenomics.00017.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW, American College of Cardiology Foundation/American Heart Association Task Force on Practice G, American Association for Thoracic S, American Society of E, American Society of Nuclear C, Heart Failure Society of A, Heart Rhythm S, Society for Cardiovascular A, Interventions, Society of Thoracic S (2011) 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 124:e783–e831. https://doi.org/10.1161/CIR.0b013e318223e2bd

    Article  PubMed  Google Scholar 

  69. Godfraind T (2017) Discovery and development of calcium channel blockers. Front Pharmacol 8:286. https://doi.org/10.3389/fphar.2017.00286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gomez-Hurtado N, Boczek NJ, Kryshtal DO, Johnson CN, Sun J, Nitu FR, Cornea RL, Chazin WJ, Calvert ML, Tester DJ, Ackerman MJ, Knollmann BC (2016) Novel CPVT-associated calmodulin mutation in CALM3 (CALM3-A103V) activates arrhythmogenic Ca waves and Sparks. Circ Arrhythm Electrophysiol 9. https://doi.org/10.1161/CIRCEP.116.004161

  71. Gonzalez DR, Treuer A, Sun QA, Stamler JS, Hare JM (2009) S-Nitrosylation of cardiac ion channels. J Cardiovasc Pharmacol 54:188–195. https://doi.org/10.1097/FJC.0b013e3181b72c9f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gorski PA, Ceholski DK, Hajjar RJ (2015) Altered myocardial calcium cycling and energetics in heart failure--a rational approach for disease treatment. Cell Metab 21:183–194. https://doi.org/10.1016/j.cmet.2015.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gorski PA, Jang SP, Jeong D, Lee A, Lee P, Oh JG, Chepurko V, Yang DK, Kwak TH, Eom SH, Park ZY, Yoo YJ, Kim DH, Kook H, Sunagawa Y, Morimoto T, Hasegawa K, Sadoshima J, Vangheluwe P, Hajjar RJ, Park WJ, Kho C (2019) Role of SIRT1 in modulating acetylation of the sarco-endoplasmic reticulum Ca(2+)-ATPase in heart failure. Circ Res 124:e63–e80. https://doi.org/10.1161/CIRCRESAHA.118.313865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guo W, Schafer S, Greaser ML, Radke MH, Liss M, Govindarajan T, Maatz H, Schulz H, Li S, Parrish AM, Dauksaite V, Vakeel P, Klaassen S, Gerull B, Thierfelder L, Regitz-Zagrosek V, Hacker TA, Saupe KW, Dec GW, Ellinor PT, MacRae CA, Spallek B, Fischer R, Perrot A, Ozcelik C, Saar K, Hubner N, Gotthardt M (2012) RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med 18:766–773. https://doi.org/10.1038/nm.2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hagemann D, Xiao RP (2002) Dual site phospholamban phosphorylation and its physiological relevance in the heart. Trends Cardiovasc Med 12:51–56. https://doi.org/10.1016/s1050-1738(01)00145-1

    Article  CAS  PubMed  Google Scholar 

  76. Haghighi K, Kolokathis F, Gramolini AO, Waggoner JR, Pater L, Lynch RA, Fan GC, Tsiapras D, Parekh RR, Dorn GW 2nd, MacLennan DH, Kremastinos DT, Kranias EG (2006) A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc Natl Acad Sci U S A 103:1388–1393. https://doi.org/10.1073/pnas.0510519103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Haines DE, DiMarco JP (1992) Current therapy for supraventricular tachycardia. Curr Probl Cardiol 17:411–477. https://doi.org/10.1016/0146-2806(92)90012-d

    Article  CAS  PubMed  Google Scholar 

  78. Heeringa J, van der Kuip DA, Hofman A, Kors JA, van Herpen G, Stricker BH, Stijnen T, Lip GY, Witteman JC (2006) Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur Heart J 27:949–953. https://doi.org/10.1093/eurheartj/ehi825

    Article  PubMed  Google Scholar 

  79. Hegyi B, Morotti S, Liu C, Ginsburg KS, Bossuyt J, Belardinelli L, Izu LT, Chen-Izu Y, Banyasz T, Grandi E, Bers DM (2019) Enhanced depolarization drive in failing rabbit ventricular myocytes: calcium-dependent and beta-adrenergic effects on late sodium, L-type calcium, and sodium-calcium exchange currents. Circ Arrhythm Electrophysiol 12:e007061. https://doi.org/10.1161/CIRCEP.118.007061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Heijman J, Dewenter M, El-Armouche A, Dobrev D (2013) Function and regulation of serine/threonine phosphatases in the healthy and diseased heart. J Mol Cell Cardiol 64:90–98. https://doi.org/10.1016/j.yjmcc.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  81. Heijman J, Voigt N, Nattel S, Dobrev D (2014) Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res 114:1483–1499. https://doi.org/10.1161/CIRCRESAHA.114.302226

    Article  CAS  PubMed  Google Scholar 

  82. Heijman J, Muna AP, Veleva T, Molina CE, Sutanto H, Tekook M, Wang Q, Abu-Taha IH, Gorka M, Kunzel S, El-Armouche A, Reichenspurner H, Kamler M, Nikolaev V, Ravens U, Li N, Nattel S, Wehrens XHT, Dobrev D (2020) Atrial myocyte NLRP3/CaMKII nexus forms a substrate for postoperative atrial fibrillation. Circ Res 127:1036–1055. https://doi.org/10.1161/CIRCRESAHA.120.316710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Helms AS, Alvarado FJ, Yob J, Tang VT, Pagani F, Russell MW, Valdivia HH, Day SM (2016) Genotype-dependent and -independent calcium signaling dysregulation in human hypertrophic cardiomyopathy. Circulation 134:1738–1748. https://doi.org/10.1161/CIRCULATIONAHA.115.020086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hernandez-Benitez R, Martinez-Martinez ML, Lajara J, Magistretti P, Montserrat N, Izpisua Belmonte JC (2018) At the heart of genome editing and cardiovascular diseases. Circ Res 123:221–223. https://doi.org/10.1161/CIRCRESAHA.118.312676

    Article  CAS  PubMed  Google Scholar 

  85. Hildebrandt JD, Sekura RD, Codina J, Iyengar R, Manclark CR, Birnbaumer L (1983) Stimulation and inhibition of adenylyl cyclases mediated by distinct regulatory proteins. Nature 302:706–709. https://doi.org/10.1038/302706a0

    Article  CAS  PubMed  Google Scholar 

  86. Hilliard FA, Steele DS, Laver D, Yang Z, Le Marchand SJ, Chopra N, Piston DW, Huke S, Knollmann BC (2010) Flecainide inhibits arrhythmogenic Ca2+ waves by open state block of ryanodine receptor Ca2+ release channels and reduction of Ca2+ spark mass. J Mol Cell Cardiol 48:293–301. https://doi.org/10.1016/j.yjmcc.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  87. Hoeker GS, Hanafy MA, Oster RA, Bers DM, Pogwizd SM (2016) Reduced arrhythmia inducibility with calcium/calmodulin-dependent protein kinase II inhibition in heart failure rabbits. J Cardiovasc Pharmacol 67:260–265. https://doi.org/10.1097/FJC.0000000000000343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Huke S, Knollmann BC (2010) Increased myofilament Ca2+-sensitivity and arrhythmia susceptibility. J Mol Cell Cardiol 48:824–833. https://doi.org/10.1016/j.yjmcc.2010.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hwang HS, Hasdemir C, Laver D, Mehra D, Turhan K, Faggioni M, Yin H, Knollmann BC (2011) Inhibition of cardiac Ca2+ release channels (RyR2) determines efficacy of class I antiarrhythmic drugs in catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol 4:128–135. https://doi.org/10.1161/CIRCEP.110.959916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hwang HS, Nitu FR, Yang Y, Walweel K, Pereira L, Johnson CN, Faggioni M, Chazin WJ, Laver D, George AL Jr, Cornea RL, Bers DM, Knollmann BC (2014) Divergent regulation of ryanodine receptor 2 calcium release channels by arrhythmogenic human calmodulin missense mutants. Circ Res 114:1114–1124. https://doi.org/10.1161/CIRCRESAHA.114.303391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Imberti JF, Underwood K, Mazzanti A, Priori SG (2016) Clinical challenges in catecholaminergic polymorphic ventricular tachycardia. Heart Lung Circ 25:777–783. https://doi.org/10.1016/j.hlc.2016.01.012

    Article  PubMed  Google Scholar 

  92. Janse MJ (2004) Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res 61:208–217. https://doi.org/10.1016/j.cardiores.2003.11.018

    Article  CAS  PubMed  Google Scholar 

  93. Johnson MT, Gudlur A, Zhang X, Xin P, Emrich SM, Yoast RE, Courjaret R, Nwokonko RM, Li W, Hempel N, Machaca K, Gill DL, Hogan PG, Trebak M (2020) L-type Ca(2+) channel blockers promote vascular remodeling through activation of STIM proteins. Proc Natl Acad Sci U S A 117:17369–17380. https://doi.org/10.1073/pnas.2007598117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kaneko N, Matsuda R, Hata Y, Shimamoto K (2009) Pharmacological characteristics and clinical applications of K201. Curr Clin Pharmacol 4:126–131. https://doi.org/10.2174/157488409788184972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kho C, Lee A, Jeong D, Oh JG, Chaanine AH, Kizana E, Park WJ, Hajjar RJ (2011) SUMO1-dependent modulation of SERCA2a in heart failure. Nature 477:601–605. https://doi.org/10.1038/nature10407

  96. Kirchhefer U, Wehrmeister D, Postma AV, Pohlentz G, Mormann M, Kucerova D, Muller FU, Schmitz W, Schulze-Bahr E, Wilde AA, Neumann J (2010) The human CASQ2 mutation K206N is associated with hyperglycosylation and altered cellular calcium handling. J Mol Cell Cardiol 49:95–105. https://doi.org/10.1016/j.yjmcc.2010.03.006

    Article  CAS  PubMed  Google Scholar 

  97. Klipp RC, Li N, Wang Q, Word TA, Sibrian-Vazquez M, Strongin RM, Wehrens XHT, Abramson JJ (2018) EL20, a potent antiarrhythmic compound, selectively inhibits calmodulin-deficient ryanodine receptor type 2. Heart Rhythm 15:578–586. https://doi.org/10.1016/j.hrthm.2017.12.017

    Article  PubMed  Google Scholar 

  98. Kranias EG, Hajjar RJ (2012) Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ Res 110:1646–1660. https://doi.org/10.1161/CIRCRESAHA.111.259754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kucerova D, Baba HA, Boknik P, Fabritz L, Heinick A, Mat’us M, Muller FU, Neumann J, Schmitz W, Kirchhefer U (2012) Modulation of SR Ca2+ release by the triadin-to-calsequestrin ratio in ventricular myocytes. Am J Physiol Heart Circ Physiol 302:H2008–H2017. https://doi.org/10.1152/ajpheart.00457.2011

    Article  CAS  PubMed  Google Scholar 

  100. Kumagai K, Nakashima H, Gondo N, Saku K (2003) Antiarrhythmic effects of JTV-519, a novel cardioprotective drug, on atrial fibrillation/flutter in a canine sterile pericarditis model. J Cardiovasc Electrophysiol 14:880–884. https://doi.org/10.1046/j.1540-8167.2003.03050.x

    Article  PubMed  Google Scholar 

  101. Kumar S, Stevenson WG, John RM (2015) Arrhythmias in dilated cardiomyopathy. Card Electrophysiol Clin 7:221–233. https://doi.org/10.1016/j.ccep.2015.03.005

    Article  PubMed  Google Scholar 

  102. Lacampagne A, Liu X, Reiken S, Bussiere R, Meli AC, Lauritzen I, Teich AF, Zalk R, Saint N, Arancio O, Bauer C, Duprat F, Briggs CA, Chakroborty S, Stutzmann GE, Shelanski ML, Checler F, Chami M, Marks AR (2017) Post-translational remodeling of ryanodine receptor induces calcium leak leading to Alzheimer’s disease-like pathologies and cognitive deficits. Acta Neuropathol 134:749–767. https://doi.org/10.1007/s00401-017-1733-7

    Article  CAS  PubMed  Google Scholar 

  103. Lahat H, Pras E, Olender T, Avidan N, Ben-Asher E, Man O, Levy-Nissenbaum E, Khoury A, Lorber A, Goldman B, Lancet D, Eldar M (2001) A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet 69:1378–1384. https://doi.org/10.1086/324565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Landstrom AP, Adekola BA, Bos JM, Ommen SR, Ackerman MJ (2011) PLN-encoded phospholamban mutation in a large cohort of hypertrophic cardiomyopathy cases: summary of the literature and implications for genetic testing. Am Heart J 161:165–171. https://doi.org/10.1016/j.ahj.2010.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Landstrom AP, Boczek NJ, Ye D, Miyake CY, De la Uz CM, Allen HD, Ackerman MJ, Kim JJ (2016) Novel long QT syndrome-associated missense mutation, L762F, in CACNA1C-encoded L-type calcium channel imparts a slower inactivation tau and increased sustained and window current. Int J Cardiol 220:290–298. https://doi.org/10.1016/j.ijcard.2016.06.081

    Article  PubMed  PubMed Central  Google Scholar 

  106. Landstrom AP, Dobrev D, Wehrens XHT (2017) Calcium signaling and cardiac arrhythmias. Circ Res 120:1969–1993. https://doi.org/10.1161/CIRCRESAHA.117.310083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2:a003996. https://doi.org/10.1101/cshperspect.a003996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lee WC, Shideman FE (1959) Role of myocardial catecholamines in cardiac contractility. Science 129:967–968. https://doi.org/10.1126/science.129.3354.967

    Article  CAS  PubMed  Google Scholar 

  109. Lee A, Jeong D, Mitsuyama S, Oh JG, Liang L, Ikeda Y, Sadoshima J, Hajjar RJ, Kho C (2014) The role of SUMO-1 in cardiac oxidative stress and hypertrophy. Antioxid Redox Signal 21:1986–2001. https://doi.org/10.1089/ars.2014.5983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel P (1995) Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation 91:1512–1519. https://doi.org/10.1161/01.cir.91.5.1512

    Article  CAS  PubMed  Google Scholar 

  111. Lehnart SE, Wehrens XH, Kushnir A, Marks AR (2004) Cardiac ryanodine receptor function and regulation in heart disease. Ann N Y Acad Sci 1015:144–159. https://doi.org/10.1196/annals.1302.012

    Article  CAS  PubMed  Google Scholar 

  112. Lehnart SE, Wehrens XH, Marks AR (2004) Calstabin deficiency, ryanodine receptors, and sudden cardiac death. Biochem Biophys Res Commun 322:1267–1279. https://doi.org/10.1016/j.bbrc.2004.08.032

    Article  CAS  PubMed  Google Scholar 

  113. Lehnart SE, Mongillo M, Bellinger A, Lindegger N, Chen BX, Hsueh W, Reiken S, Wronska A, Drew LJ, Ward CW, Lederer WJ, Kass RS, Morley G, Marks AR (2008) Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest 118:2230–2245. https://doi.org/10.1172/JCI35346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li N, Chiang DY, Wang S, Wang Q, Sun L, Voigt N, Respress JL, Ather S, Skapura DG, Jordan VK, Horrigan FT, Schmitz W, Muller FU, Valderrabano M, Nattel S, Dobrev D, Wehrens XHT (2014) Ryanodine receptor-mediated calcium leak drives progressive development of an atrial fibrillation substrate in a transgenic mouse model. Circulation 129:1276–1285. https://doi.org/10.1161/CIRCULATIONAHA.113.006611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li N, Wang Q, Sibrian-Vazquez M, Klipp RC, Reynolds JO, Word TA, Scott L Jr, Salama G, Strongin RM, Abramson JJ, Wehrens XHT (2017) Treatment of catecholaminergic polymorphic ventricular tachycardia in mice using novel RyR2-modifying drugs. Int J Cardiol 227:668–673. https://doi.org/10.1016/j.ijcard.2016.10.078

    Article  PubMed  Google Scholar 

  116. Limpitikul WB, Dick IE, Joshi-Mukherjee R, Overgaard MT, George AL Jr, Yue DT (2014) Calmodulin mutations associated with long QT syndrome prevent inactivation of cardiac L-type Ca(2+) currents and promote proarrhythmic behavior in ventricular myocytes. J Mol Cell Cardiol 74:115–124. https://doi.org/10.1016/j.yjmcc.2014.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Limpitikul WB, Dick IE, Tester DJ, Boczek NJ, Limphong P, Yang W, Choi MH, Babich J, DiSilvestre D, Kanter RJ, Tomaselli GF, Ackerman MJ, Yue DT (2017) A precision medicine approach to the rescue of function on malignant calmodulinopathic long-QT syndrome. Circ Res 120:39–48. https://doi.org/10.1161/CIRCRESAHA.116.309283

    Article  CAS  PubMed  Google Scholar 

  118. Liu GS, Morales A, Vafiadaki E, Lam CK, Cai WF, Haghighi K, Adly G, Hershberger RE, Kranias EG (2015) A novel human R25C-phospholamban mutation is associated with super-inhibition of calcium cycling and ventricular arrhythmia. Cardiovasc Res 107:164–174. https://doi.org/10.1093/cvr/cvv127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lubbers ER, Mohler PJ (2016) Roles and regulation of protein phosphatase 2A (PP2A) in the heart. J Mol Cell Cardiol 101:127–133. https://doi.org/10.1016/j.yjmcc.2016.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lyon AR, Bannister ML, Collins T, Pearce E, Sepehripour AH, Dubb SS, Garcia E, O’Gara P, Liang L, Kohlbrenner E, Hajjar RJ, Peters NS, Poole-Wilson PA, Macleod KT, Harding SE (2011) SERCA2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circ Arrhythm Electrophysiol 4:362–372. https://doi.org/10.1161/CIRCEP.110.961615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lyon AR, Babalis D, Morley-Smith AC, Hedger M, Suarez Barrientos A, Foldes G, Couch LS, Chowdhury RA, Tzortzis KN, Peters NS, Rog-Zielinska EA, Yang HY, Welch S, Bowles CT, Rahman Haley S, Bell AR, Rice A, Sasikaran T, Johnson NA, Falaschetti E, Parameshwar J, Lewis C, Tsui S, Simon A, Pepper J, Rudy JJ, Zsebo KM, Macleod KT, Terracciano CM, Hajjar RJ, Banner N, Harding SE (2020) Investigation of the safety and feasibility of AAV1/SERCA2a gene transfer in patients with chronic heart failure supported with a left ventricular assist device-the SERCA-LVAD trial. Gene Ther. https://doi.org/10.1038/s41434-020-0171-7

  122. MacLennan DH, Asahi M, Tupling AR (2003) The regulation of SERCA-type pumps by phospholamban and sarcolipin. Ann N Y Acad Sci 986:472–480. https://doi.org/10.1111/j.1749-6632.2003.tb07231.x

    Article  CAS  PubMed  Google Scholar 

  123. MacMillan D (2013) FK506 binding proteins: cellular regulators of intracellular Ca2+ signalling. Eur J Pharmacol 700:181–193. https://doi.org/10.1016/j.ejphar.2012.12.029

    Article  CAS  PubMed  Google Scholar 

  124. Marcus FI, Fontaine GH, Guiraudon G, Frank R, Laurenceau JL, Malergue C, Grosgogeat Y (1982) Right ventricular dysplasia: a report of 24 adult cases. Circulation 65:384–398. https://doi.org/10.1161/01.cir.65.2.384

    Article  CAS  PubMed  Google Scholar 

  125. Marian AJ, Braunwald E (2017) Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 121:749–770. https://doi.org/10.1161/CIRCRESAHA.117.311059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Marian AJ, Asatryan B, Wehrens XHT (2020) Genetic basis and molecular biology of cardiac arrhythmias in cardiomyopathies. Cardiovasc Res 116:1600–1619. https://doi.org/10.1093/cvr/cvaa116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Maron BJ (2002) Hypertrophic cardiomyopathy: a systematic review. JAMA 287:1308–1320. https://doi.org/10.1001/jama.287.10.1308

    Article  PubMed  Google Scholar 

  128. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO (2009) Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006. Circulation 119:1085–1092. https://doi.org/10.1161/CIRCULATIONAHA.108.804617

    Article  PubMed  Google Scholar 

  129. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376. https://doi.org/10.1016/s0092-8674(00)80847-8

    Article  CAS  PubMed  Google Scholar 

  130. McCauley MD, Wehrens XH (2011) Ryanodine receptor phosphorylation, calcium/calmodulin-dependent protein kinase II, and life-threatening ventricular arrhythmias. Trends Cardiovasc Med 21:48–51. https://doi.org/10.1016/j.tcm.2012.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. McGahon MK, McKee J, Dash DP, Brown E, Simpson DA, Curtis TM, McGeown JG, Scholfield CN (2012) Pharmacological profiling of store-operated Ca2+ entry in retinal arteriolar smooth muscle. Microcirculation 19:586–597. https://doi.org/10.1111/j.1549-8719.2012.00192.x

    Article  CAS  PubMed  Google Scholar 

  132. Micheletti R, Palazzo F, Barassi P, Giacalone G, Ferrandi M, Schiavone A, Moro B, Parodi O, Ferrari P, Bianchi G (2007) Istaroxime, a stimulator of sarcoplasmic reticulum calcium adenosine triphosphatase isoform 2a activity, as a novel therapeutic approach to heart failure. Am J Cardiol 99:24A–32A. https://doi.org/10.1016/j.amjcard.2006.09.003

    Article  CAS  PubMed  Google Scholar 

  133. Molina CE, Abu-Taha IH, Wang Q, Rosello-Diez E, Kamler M, Nattel S, Ravens U, Wehrens XHT, Hove-Madsen L, Heijman J, Dobrev D (2018) Profibrotic, electrical, and calcium-handling remodeling of the atria in heart failure patients with and without atrial fibrillation. Front Physiol 9:1383. https://doi.org/10.3389/fphys.2018.01383

    Article  PubMed  PubMed Central  Google Scholar 

  134. Montnach J, Agullo-Pascual E, Tadros R, Bezzina CR, Delmar M (2018) Bioinformatic analysis of a plakophilin-2-dependent transcription network: implications for the mechanisms of arrhythmogenic right ventricular cardiomyopathy in humans and in boxer dogs. Europace 20:iii125–iii132. https://doi.org/10.1093/europace/euy238

    Article  PubMed  Google Scholar 

  135. Napolitano C, Priori SG, Bloise R (1993) Catecholaminergic polymorphic ventricular tachycardia. In: GeneReviews((R)). Seattle (WA)

  136. Nattel S, Dobrev D (2016) Electrophysiological and molecular mechanisms of paroxysmal atrial fibrillation. Nat Rev Cardiol 13:575–590. https://doi.org/10.1038/nrcardio.2016.118

    Article  CAS  PubMed  Google Scholar 

  137. Nattel S, Burstein B, Dobrev D (2008) Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol 1:62–73. https://doi.org/10.1161/CIRCEP.107.754564

    Article  PubMed  Google Scholar 

  138. Nattel S, Heijman J, Zhou L, Dobrev D (2020) Molecular basis of atrial fibrillation pathophysiology and therapy: a translational perspective. Circ Res 127:51–72. https://doi.org/10.1161/CIRCRESAHA.120.316363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Neef S, Dybkova N, Sossalla S, Ort KR, Fluschnik N, Neumann K, Seipelt R, Schondube FA, Hasenfuss G, Maier LS (2010) CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res 106:1134–1144. https://doi.org/10.1161/CIRCRESAHA.109.203836

    Article  CAS  PubMed  Google Scholar 

  140. Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD, Wu F, Reese AL, McAnally JR, Chen X, Kavalali ET, Cannon SC, Houser SR, Bassel-Duby R, Olson EN (2016) A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351:271–275. https://doi.org/10.1126/science.aad4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ni L, Scott L Jr, Campbell HM, Pan X, Alsina KM, Reynolds J, Philippen LE, Hulsurkar M, Lagor WR, Li N, Wehrens XHT (2019) Atrial-specific gene delivery using an adeno-associated viral vector. Circ Res 124:256–262. https://doi.org/10.1161/CIRCRESAHA.118.313811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nikolaienko R, Bovo E, Zima AV (2018) Redox dependent modifications of ryanodine receptor: basic mechanisms and implications in heart diseases. Front Physiol 9:1775. https://doi.org/10.3389/fphys.2018.01775

    Article  PubMed  PubMed Central  Google Scholar 

  143. Nyegaard M, Overgaard MT, Sondergaard MT, Vranas M, Behr ER, Hildebrandt LL, Lund J, Hedley PL, Camm AJ, Wettrell G, Fosdal I, Christiansen M, Borglum AD (2012) Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am J Hum Genet 91:703–712. https://doi.org/10.1016/j.ajhg.2012.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Oda T, Yang Y, Uchinoumi H, Thomas DD, Chen-Izu Y, Kato T, Yamamoto T, Yano M, Cornea RL, Bers DM (2015) Oxidation of ryanodine receptor (RyR) and calmodulin enhance Ca release and pathologically alter, RyR structure and calmodulin affinity. J Mol Cell Cardiol 85:240–248. https://doi.org/10.1016/j.yjmcc.2015.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Olivotto I, Cecchi F, Casey SA, Dolara A, Traverse JH, Maron BJ (2001) Impact of atrial fibrillation on the clinical course of hypertrophic cardiomyopathy. Circulation 104:2517–2524. https://doi.org/10.1161/hc4601.097997

    Article  CAS  PubMed  Google Scholar 

  146. Orchard C, Brette F (2008) t-Tubules and sarcoplasmic reticulum function in cardiac ventricular myocytes. Cardiovasc Res 77:237–244. https://doi.org/10.1093/cvr/cvm002

    Article  CAS  PubMed  Google Scholar 

  147. Pan X, Philippen L, Lahiri SK, Lee C, Park SH, Word TA, Li N, Jarrett KE, Gupta R, Reynolds JO, Lin J, Bao G, Lagor WR, Wehrens XHT (2018) In vivo Ryr2 editing corrects catecholaminergic polymorphic ventricular tachycardia. Circ Res 123:953–963. https://doi.org/10.1161/CIRCRESAHA.118.313369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Pollak AJ, Haghighi K, Kunduri S, Arvanitis DA, Bidwell PA, Liu GS, Singh VP, Gonzalez DJ, Sanoudou D, Wiley SE, Dixon JE, Kranias EG (2017) Phosphorylation of serine96 of histidine-rich calcium-binding protein by the Fam20C kinase functions to prevent cardiac arrhythmia. Proc Natl Acad Sci U S A 114:9098–9103. https://doi.org/10.1073/pnas.1706441114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Priori SG, Corr PB (1990) Mechanisms underlying early and delayed afterdepolarizations induced by catecholamines. Am J Phys 258:H1796–H1805. https://doi.org/10.1152/ajpheart.1990.258.6.H1796

    Article  CAS  Google Scholar 

  150. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, Sorrentino V, Danieli GA (2001) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103:196–200. https://doi.org/10.1161/01.cir.103.2.196

    Article  CAS  PubMed  Google Scholar 

  151. Qin L, Wang J, Zhao R, Zhang X, Mei Y (2019) Ginsenoside-Rb1 improved diabetic cardiomyopathy through regulating calcium signaling by alleviating protein O-GlcNAcylation. J Agric Food Chem 67:14074–14085. https://doi.org/10.1021/acs.jafc.9b05706

    Article  CAS  PubMed  Google Scholar 

  152. Quan C, Li M, Du Q, Chen Q, Wang H, Campbell D, Fang L, Xue B, MacKintosh C, Gao X, Ouyang K, Wang HY, Chen S (2019) SPEG controls calcium reuptake into the sarcoplasmic reticulum through regulating SERCA2a by its second kinase-domain. Circ Res 124:712–726. https://doi.org/10.1161/CIRCRESAHA.118.313916

    Article  CAS  PubMed  Google Scholar 

  153. Quick AP, Wang Q, Philippen LE, Barreto-Torres G, Chiang DY, Beavers D, Wang G, Khalid M, Reynolds JO, Campbell HM, Showell J, McCauley MD, Scholten A, Wehrens XH (2017) SPEG (striated muscle preferentially expressed protein kinase) is essential for cardiac function by regulating junctional membrane complex activity. Circ Res 120:110–119. https://doi.org/10.1161/CIRCRESAHA.116.309977

    Article  CAS  PubMed  Google Scholar 

  154. Reiken S, Wehrens XH, Vest JA, Barbone A, Klotz S, Mancini D, Burkhoff D, Marks AR (2003) Beta-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation 107:2459–2466. https://doi.org/10.1161/01.CIR.0000068316.53218.49

    Article  CAS  PubMed  Google Scholar 

  155. Reyes-Juarez JL, Zarain-Herzberg A (2006) Function and role of the sarcoplasmic reticulum in heart disease. Arch Cardiol Mex 76(Suppl 4):S18–S32

    PubMed  Google Scholar 

  156. Reynolds JO, Chiang DY, Wang W, Beavers DL, Dixit SS, Skapura DG, Landstrom AP, Song LS, Ackerman MJ, Wehrens XH (2013) Junctophilin-2 is necessary for T-tubule maturation during mouse heart development. Cardiovasc Res 100:44–53. https://doi.org/10.1093/cvr/cvt133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Reynolds JO, Quick AP, Wang Q, Beavers DL, Philippen LE, Showell J, Barreto-Torres G, Thuerauf DJ, Doroudgar S, Glembotski CC, Wehrens XH (2016) Junctophilin-2 gene therapy rescues heart failure by normalizing RyR2-mediated Ca2+ release. Int J Cardiol 225:371–380. https://doi.org/10.1016/j.ijcard.2016.10.021

    Article  PubMed  PubMed Central  Google Scholar 

  158. Richards MA, Clarke JD, Saravanan P, Voigt N, Dobrev D, Eisner DA, Trafford AW, Dibb KM (2011) Transverse tubules are a common feature in large mammalian atrial myocytes including human. Am J Physiol Heart Circ Physiol 301:H1996–H2005. https://doi.org/10.1152/ajpheart.00284.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rocchetti M, Alemanni M, Mostacciuolo G, Barassi P, Altomare C, Chisci R, Micheletti R, Ferrari P, Zaza A (2008) Modulation of sarcoplasmic reticulum function by PST2744 [istaroxime; (E,Z)-3-((2-aminoethoxy)imino) androstane-6,17-dione hydrochloride)] in a pressure-overload heart failure model. J Pharmacol Exp Ther 326:957–965. doi:https://doi.org/10.1124/jpet.108.138701

  160. Rooryck C, Kyndt F, Bozon D, Roux-Buisson N, Sacher F, Probst V, Thambo JB (2015) New family with catecholaminergic polymorphic ventricular tachycardia linked to the triadin gene. J Cardiovasc Electrophysiol 26:1146–1150. https://doi.org/10.1111/jce.12763

    Article  PubMed  Google Scholar 

  161. Roston TM, Vinocur JM, Maginot KR, Mohammed S, Salerno JC, Etheridge SP, Cohen M, Hamilton RM, Pflaumer A, Kanter RJ, Potts JE, LaPage MJ, Collins KK, Gebauer RA, Temple JD, Batra AS, Erickson C, Miszczak-Knecht M, Kubus P, Bar-Cohen Y, Kantoch M, Thomas VC, Hessling G, Anderson C, Young ML, Cabrera Ortega M, Lau YR, Johnsrude CL, Fournier A, Kannankeril PJ, Sanatani S (2015) Catecholaminergic polymorphic ventricular tachycardia in children: analysis of therapeutic strategies and outcomes from an international multicenter registry. Circ Arrhythm Electrophysiol 8:633–642. https://doi.org/10.1161/CIRCEP.114.002217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Roston TM, Yuchi Z, Kannankeril PJ, Hathaway J, Vinocur JM, Etheridge SP, Potts JE, Maginot KR, Salerno JC, Cohen MI, Hamilton RM, Pflaumer A, Mohammed S, Kimlicka L, Kanter RJ, LaPage MJ, Collins KK, Gebauer RA, Temple JD, Batra AS, Erickson C, Miszczak-Knecht M, Kubus P, Bar-Cohen Y, Kantoch M, Thomas VC, Hessling G, Anderson C, Young ML, Choi SHJ, Cabrera Ortega M, Lau YR, Johnsrude CL, Fournier A, Van Petegem F, Sanatani S (2018) The clinical and genetic spectrum of catecholaminergic polymorphic ventricular tachycardia: findings from an international multicentre registry. Europace 20:541–547. https://doi.org/10.1093/europace/euw389

    Article  PubMed  Google Scholar 

  163. Roux-Buisson N, Cacheux M, Fourest-Lieuvin A, Fauconnier J, Brocard J, Denjoy I, Durand P, Guicheney P, Kyndt F, Leenhardt A, Le Marec H, Lucet V, Mabo P, Probst V, Monnier N, Ray PF, Santoni E, Tremeaux P, Lacampagne A, Faure J, Lunardi J, Marty I (2012) Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum Mol Genet 21:2759–2767. https://doi.org/10.1093/hmg/dds104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Said M, Becerra R, Valverde CA, Kaetzel MA, Dedman JR, Mundina-Weilenmann C, Wehrens XH, Vittone L, Mattiazzi A (2011) Calcium-calmodulin dependent protein kinase II (CaMKII): a main signal responsible for early reperfusion arrhythmias. J Mol Cell Cardiol 51:936–944. https://doi.org/10.1016/j.yjmcc.2011.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sakata S, Lebeche D, Sakata N, Sakata Y, Chemaly ER, Liang LF, Tsuji T, Takewa Y, del Monte F, Peluso R, Zsebo K, Jeong D, Park WJ, Kawase Y, Hajjar RJ (2007) Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. J Mol Cell Cardiol 42:852–861. https://doi.org/10.1016/j.yjmcc.2007.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Santulli G, Nakashima R, Yuan Q, Marks AR (2017) Intracellular calcium release channels: an update. J Physiol 595:3041–3051. https://doi.org/10.1113/JP272781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Singh BN, Ellrodt G, Peter CT (1978) Verapamil: a review of its pharmacological properties and therapeutic use. Drugs 15:169–197. https://doi.org/10.2165/00003495-197815030-00001

    Article  PubMed  Google Scholar 

  168. Tardiff JC (2005) Sarcomeric proteins and familial hypertrophic cardiomyopathy: linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Fail Rev 10:237–248. https://doi.org/10.1007/s10741-005-5253-5

    Article  CAS  PubMed  Google Scholar 

  169. Terentyev D, Hamilton S (2016) Regulation of sarcoplasmic reticulum Ca(2+) release by serine-threonine phosphatases in the heart. J Mol Cell Cardiol 101:156–164. https://doi.org/10.1016/j.yjmcc.2016.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Tilemann L, Lee A, Ishikawa K, Aguero J, Rapti K, Santos-Gallego C, Kohlbrenner E, Fish KM, Kho C, Hajjar RJ (2013) SUMO-1 gene transfer improves cardiac function in a large-animal model of heart failure. Sci Transl Med 5:211ra159. https://doi.org/10.1126/scitranslmed.3006487

    Article  CAS  PubMed  Google Scholar 

  171. Tiso N, Stephan DA, Nava A, Bagattin A, Devaney JM, Stanchi F, Larderet G, Brahmbhatt B, Brown K, Bauce B, Muriago M, Basso C, Thiene G, Danieli GA, Rampazzo A (2001) Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet 10:189–194. https://doi.org/10.1093/hmg/10.3.189

    Article  CAS  PubMed  Google Scholar 

  172. Toischer K, Lehnart SE, Tenderich G, Milting H, Korfer R, Schmitto JD, Schondube FA, Kaneko N, Loughrey CM, Smith GL, Hasenfuss G, Seidler T (2010) K201 improves aspects of the contractile performance of human failing myocardium via reduction in Ca2+ leak from the sarcoplasmic reticulum. Basic Res Cardiol 105:279–287. https://doi.org/10.1007/s00395-009-0057-8

    Article  CAS  PubMed  Google Scholar 

  173. Trivedi A, Hoffman J, Arora R (2019) Gene therapy for atrial fibrillation-how close to clinical implementation? Int J Cardiol 296:177–183. https://doi.org/10.1016/j.ijcard.2019.07.057

    Article  PubMed  PubMed Central  Google Scholar 

  174. Valdivia HH (2012) Ryanodine receptor phosphorylation and heart failure: phasing out S2808 and “criminalizing” S2814. Circ Res 110:1398–1402. https://doi.org/10.1161/CIRCRESAHA.112.270876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. van der Werf C, Lieve KV (2016) Beta-blockers in the treatment of catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 13:441–442. https://doi.org/10.1016/j.hrthm.2015.10.027

    Article  PubMed  Google Scholar 

  176. van der Werf C, Zwinderman AH, Wilde AA (2012) Therapeutic approach for patients with catecholaminergic polymorphic ventricular tachycardia: state of the art and future developments. Europace 14:175–183. https://doi.org/10.1093/europace/eur277

    Article  PubMed  Google Scholar 

  177. van Oort RJ, McCauley MD, Dixit SS, Pereira L, Yang Y, Respress JL, Wang Q, De Almeida AC, Skapura DG, Anderson ME, Bers DM, Wehrens XH (2010) Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation 122:2669–2679. https://doi.org/10.1161/CIRCULATIONAHA.110.982298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. van Oort RJ, Garbino A, Wang W, Dixit SS, Landstrom AP, Gaur N, De Almeida AC, Skapura DG, Rudy Y, Burns AR, Ackerman MJ, Wehrens XH (2011) Disrupted junctional membrane complexes and hyperactive ryanodine receptors after acute junctophilin knockdown in mice. Circulation 123:979–988. https://doi.org/10.1161/CIRCULATIONAHA.110.006437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Vangheluwe P, Raeymaekers L, Dode L, Wuytack F (2005) Modulating sarco(endo)plasmic reticulum Ca2+ ATPase 2 (SERCA2) activity: cell biological implications. Cell Calcium 38:291–302. https://doi.org/10.1016/j.ceca.2005.06.033

    Article  CAS  PubMed  Google Scholar 

  180. Vangheluwe P, Schuermans M, Zador E, Waelkens E, Raeymaekers L, Wuytack F (2005) Sarcolipin and phospholamban mRNA and protein expression in cardiac and skeletal muscle of different species. Biochem J 389:151–159. https://doi.org/10.1042/BJ20050068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Voigt N, Li N, Wang Q, Wang W, Trafford AW, Abu-Taha I, Sun Q, Wieland T, Ravens U, Nattel S, Wehrens XH, Dobrev D (2012) Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 125:2059–2070. https://doi.org/10.1161/CIRCULATIONAHA.111.067306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Voigt N, Heijman J, Wang Q, Chiang DY, Li N, Karck M, Wehrens XHT, Nattel S, Dobrev D (2014) Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation 129:145–156. https://doi.org/10.1161/CIRCULATIONAHA.113.006641

    Article  CAS  PubMed  Google Scholar 

  183. Wakili R, Voigt N, Kaab S, Dobrev D, Nattel S (2011) Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest 121:2955–2968. https://doi.org/10.1172/JCI46315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Walweel K, Oo YW, Laver DR (2017) The emerging role of calmodulin regulation of RyR2 in controlling heart rhythm, the progression of heart failure and the antiarrhythmic action of dantrolene. Clin Exp Pharmacol Physiol 44:135–142. https://doi.org/10.1111/1440-1681.12669

    Article  CAS  PubMed  Google Scholar 

  185. Watanabe H, Chopra N, Laver D, Hwang HS, Davies SS, Roach DE, Duff HJ, Roden DM, Wilde AA, Knollmann BC (2009) Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat Med 15:380–383. https://doi.org/10.1038/nm.1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wegener AD, Simmerman HK, Lindemann JP, Jones LR (1989) Phospholamban phosphorylation in intact ventricles. Phosphorylation of serine 16 and threonine 17 in response to beta-adrenergic stimulation. J Biol Chem 264:11468–11474

    Article  CAS  PubMed  Google Scholar 

  187. Wehrens XH (2007) Istaroxime, a novel luso-inotropic agent for the treatment of acute heart failure. Curr Opin Investig Drugs 8:769–777

    CAS  PubMed  Google Scholar 

  188. Wehrens XH, Marks AR (2004) Novel therapeutic approaches for heart failure by normalizing calcium cycling. Nat Rev Drug Discov 3:565–573. https://doi.org/10.1038/nrd1440

    Article  CAS  PubMed  Google Scholar 

  189. Wehrens XH, Vos MA, Doevendans PA, Wellens HJ (2002) Novel insights in the congenital long QT syndrome. Ann Intern Med 137:981–992. https://doi.org/10.7326/0003-4819-137-12-200212170-00012

    Article  CAS  PubMed  Google Scholar 

  190. Wehrens XH, Lehnart SE, Reiken SR, Deng SX, Vest JA, Cervantes D, Coromilas J, Landry DW, Marks AR (2004) Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science 304:292–296. https://doi.org/10.1126/science.1094301

    Article  CAS  PubMed  Google Scholar 

  191. Wehrens XH, Lehnart SE, Reiken SR, Marks AR (2004) Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94:e61–e70. https://doi.org/10.1161/01.RES.0000125626.33738.E2

    Article  CAS  PubMed  Google Scholar 

  192. Wehrens XH, Lehnart SE, Marks AR (2005) Intracellular calcium release and cardiac disease. Annu Rev Physiol 67:69–98. https://doi.org/10.1146/annurev.physiol.67.040403.114521

    Article  CAS  PubMed  Google Scholar 

  193. Wehrens XH, Lehnart SE, Reiken S, Vest JA, Wronska A, Marks AR (2006) Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc Natl Acad Sci U S A 103:511–518. https://doi.org/10.1073/pnas.0510113103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wemhoner K, Friedrich C, Stallmeyer B, Coffey AJ, Grace A, Zumhagen S, Seebohm G, Ortiz-Bonnin B, Rinne S, Sachse FB, Schulze-Bahr E, Decher N (2015) Gain-of-function mutations in the calcium channel CACNA1C (Cav1.2) cause non-syndromic long-QT but not Timothy syndrome. J Mol Cell Cardiol 80:186–195. https://doi.org/10.1016/j.yjmcc.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  195. Wleklinski MJ, Kannankeril PJ, Knollmann BC (2020) Molecular and tissue mechanisms of catecholaminergic polymorphic ventricular tachycardia. J Physiol 598:2817–2834. https://doi.org/10.1113/JP276757

    Article  CAS  PubMed  Google Scholar 

  196. Wright JM, Musini VM, Gill R (2018) First-line drugs for hypertension. Cochrane Database Syst Rev 4:CD001841. https://doi.org/10.1002/14651858.CD001841.pub3

    Article  PubMed  Google Scholar 

  197. Yao C, Veleva T, Scott L Jr, Cao S, Li L, Chen G, Jeyabal P, Pan X, Alsina KM, Abu-Taha ID, Ghezelbash S, Reynolds CL, Shen YH, LeMaire SA, Schmitz W, Muller FU, El-Armouche A, Tony Eissa N, Beeton C, Nattel S, Wehrens XHT, Dobrev D, Li N (2018) Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation 138:2227–2242. https://doi.org/10.1161/CIRCULATIONAHA.118.035202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yin G, Hassan F, Haroun AR, Murphy LL, Crotti L, Schwartz PJ, George AL, Satin J (2014) Arrhythmogenic calmodulin mutations disrupt intracellular cardiomyocyte Ca2+ regulation by distinct mechanisms. J Am Heart Assoc 3:e000996. https://doi.org/10.1161/JAHA.114.000996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Yusuf S, Held P, Furberg C (1991) Update of effects of calcium antagonists in myocardial infarction or angina in light of the second Danish Verapamil Infarction Trial (DAVIT-II) and other recent studies. Am J Cardiol 67:1295–1297. https://doi.org/10.1016/0002-9149(91)90944-g

    Article  CAS  PubMed  Google Scholar 

  200. Zhai Y, Luo Y, Wu P, Li D (2018) New insights into SERCA2a gene therapy in heart failure: pay attention to the negative effects of B-type natriuretic peptides. J Med Genet 55:287–296. https://doi.org/10.1136/jmedgenet-2017-105120

    Article  CAS  PubMed  Google Scholar 

  201. Zhang C, Chen B, Guo A, Zhu Y, Miller JD, Gao S, Yuan C, Kutschke W, Zimmerman K, Weiss RM, Wehrens XH, Hong J, Johnson FL, Santana LF, Anderson ME, Song LS (2014) Microtubule-mediated defects in junctophilin-2 trafficking contribute to myocyte transverse-tubule remodeling and Ca2+ handling dysfunction in heart failure. Circulation 129:1742–1750. https://doi.org/10.1161/CIRCULATIONAHA.113.008452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhang JZ, McLay JC, Jones PP (2014) The arrhythmogenic human HRC point mutation S96A leads to spontaneous Ca(2+) release due to an impaired ability to buffer store Ca(2+). J Mol Cell Cardiol 74:22–31. https://doi.org/10.1016/j.yjmcc.2014.04.019

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

XW was funded through NIH grants R01-HL089598, R01-HL091947, R01-HL117641, and R01-HL147108.

Author information

Authors and Affiliations

Authors

Contributions

SL, YAS, and XW collaborated in writing the review article.

Corresponding author

Correspondence to Xander H. T. Wehrens.

Ethics declarations

Conflict of interest

XHTW is a founding partner of Elex Biotech, a start-up company that developed drug molecules to target ryanodine receptors for treatment of cardiac arrhythmias. Other authors have no conflicts related to this study.

Ethics approval

N/A

Consent to participate

N/A

Consent for publication

The authors give consent for the publication of this manuscript.

Code availability

N/A

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original article was published with an error. Reference '95' was added in the text but was not added in the reference list. Therefore, current hyperlink on the in-text reference 95 shows wrong citation. This further changed the whole reference list from 95 to end and shows total of 201 reference instead of submitted 202 references.

Satadru K. Lahiri and Yuriana Aguilar-Sanchez shared first authorship

This article is part of the special issue on Calcium Signal Dynamics in Cardiac Myocytes and Fibroblasts: Mechanisms in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahiri, S.K., Aguilar-Sanchez, Y. & Wehrens, X.H.T. Mechanisms underlying pathological Ca2+ handling in diseases of the heart. Pflugers Arch - Eur J Physiol 473, 331–347 (2021). https://doi.org/10.1007/s00424-020-02504-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02504-z

Keywords

Navigation