Skip to main content
Log in

Excitation-contraction coupling and calcium release in atrial muscle

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

In cardiac muscle, the process of excitation-contraction coupling (ECC) describes the chain of events that links action potential induced myocyte membrane depolarization, surface membrane ion channel activation, triggering of Ca2+ induced Ca2+ release from the sarcoplasmic reticulum (SR) Ca2+ store to activation of the contractile machinery that is ultimately responsible for the pump function of the heart. Here we review similarities and differences of structural and functional attributes of ECC between atrial and ventricular tissue. We explore a novel “fire-diffuse-uptake-fire” paradigm of atrial ECC and Ca2+ release that assigns a novel role to the SR SERCA pump and involves a concerted “tandem” activation of the ryanodine receptor Ca2+ release channel by cytosolic and luminal Ca2+. We discuss the contribution of the inositol 1,4,5-trisphosphate (IP3) receptor Ca2+ release channel as an auxiliary pathway to Ca2+ signaling, and we review IP3 receptor-induced Ca2+ release involvement in beat-to-beat ECC, nuclear Ca2+ signaling, and arrhythmogenesis. Finally, we explore the topic of electromechanical and Ca2+ alternans and its ramifications for atrial arrhythmia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akar FG (2014) Emergence of atrial repolarization alternans at late stages of remodeling: the "second factor" in atrial fibrillation progression. J Cardiovasc Electrophysiol 25:428–430. https://doi.org/10.1111/jce.12377

    Article  PubMed  Google Scholar 

  2. Alvarez-Lacalle E, Cantalapiedra IR, Penaranda A, Cinca J, Hove-Madsen L, Echebarria B (2013) Dependency of calcium alternans on ryanodine receptor refractoriness. PLoS One 8:e55042. https://doi.org/10.1371/journal.pone.0055042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aon MA (2013) Mitochondrial dysfunction, alternans, and arrhythmias. Front Physiol 4:83. https://doi.org/10.3389/fphys.2013.00083

    Article  PubMed  PubMed Central  Google Scholar 

  4. Berlin JR (1995) Spatiotemporal changes of Ca2+ during electrically evoked contractions in atrial and ventricular cells. Am J Phys 269:H1165–H1170

    CAS  Google Scholar 

  5. Blatter LA, Kockskamper J, Sheehan KA, Zima AV, Huser J, Lipsius SL (2003) Local calcium gradients during excitation-contraction coupling and alternans in atrial myocytes. J Physiol 546:19–31

    CAS  PubMed  Google Scholar 

  6. Boknik P, Unkel C, Kirchhefer U, Kleideiter U, Klein-Wiele O, Knapp J, Linck B, Luss H, Muller FU, Schmitz W, Vahlensieck U, Zimmermann N, Jones LR, Neumann J (1999) Regional expression of phospholamban in the human heart. Cardiovasc Res 43:67–76

    CAS  PubMed  Google Scholar 

  7. Bootman MD, Higazi DR, Coombes S, Roderick HL (2006) Calcium signalling during excitation-contraction coupling in mammalian atrial myocytes. J Cell Sci 119:3915–3925. https://doi.org/10.1242/jcs.03223

    Article  CAS  PubMed  Google Scholar 

  8. Bootman MD, Smyrnias I, Thul R, Coombes S, Roderick HL (2011) Atrial cardiomyocyte calcium signalling. Biochim Biophys Acta 1813:922–934. https://doi.org/10.1016/j.bbamcr.2011.01.030

    Article  CAS  PubMed  Google Scholar 

  9. Brandenburg S, Kohl T, Williams GS, Gusev K, Wagner E, Rog-Zielinska EA, Hebisch E, Dura M, Didie M, Gotthardt M, Nikolaev VO, Hasenfuss G, Kohl P, Ward CW, Lederer WJ, Lehnart SE (2016) Axial tubule junctions control rapid calcium signaling in atria. J Clin Invest 126:3999–4015. https://doi.org/10.1172/JCI88241

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brochet DX, Yang D, Di Maio A, Lederer WJ, Franzini-Armstrong C, Cheng H (2005) Ca2+ blinks: rapid nanoscopic store calcium signaling. Proc Natl Acad Sci U S A 102:3099–3104

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Carl SL, Felix K, Caswell AH, Brandt NR, Ball WJ Jr, Vaghy PL, Meissner G, Ferguson DG (1995) Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium. J Cell Biol 129:672–682

    Google Scholar 

  12. Chen H, Valle G, Furlan S, Nani A, Gyorke S, Fill M, Volpe P (2013) Mechanism of calsequestrin regulation of single cardiac ryanodine receptor in normal and pathological conditions. J Gen Physiol 142:127–136. https://doi.org/10.1085/jgp.201311022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clusin WT (2008) Mechanisms of calcium transient and action potential alternans in cardiac cells and tissues. Am J Physiol Heart Circ Physiol 294:H1–H10 00802.2007

    CAS  PubMed  Google Scholar 

  14. Comtois P, Nattel S (2012) Atrial repolarization alternans as a path to atrial fibrillation. J Cardiovasc Electrophysiol 23:1013–1015. https://doi.org/10.1111/j.1540-8167.2012.02391.x

    Article  PubMed  Google Scholar 

  15. Coyne KS, Paramore C, Grandy S, Mercader M, Reynolds M, Zimetbaum P (2006) Assessing the direct costs of treating nonvalvular atrial fibrillation in the United States. Value Health 9:348–356. https://doi.org/10.1111/j.1524-4733.2006.00124.x

    Article  PubMed  Google Scholar 

  16. Cutler MJ, Wan X, Laurita KR, Hajjar RJ, Rosenbaum DS (2009) Targeted SERCA2a gene expression identifies molecular mechanism and therapeutic target for arrhythmogenic cardiac alternans. Circ Arrhythm Electrophysiol 2:686–694 CIRCEP.109.863118

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dedkova EN, Blatter LA (2013) Calcium signaling in cardiac mitochondria. J Mol Cell Cardiol 58:125–133. https://doi.org/10.1016/j.yjmcc.2012.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Diaz ME, O'Neill SC, Eisner DA (2004) Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans. Circ Res 94:650–656

    CAS  PubMed  Google Scholar 

  19. Domeier TL, Zima AV, Maxwell JT, Huke S, Mignery GA, Blatter LA (2008) IP3 receptor-dependent Ca2+ release modulates excitation-contraction coupling in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol 294:H596–H604

  20. Edwards JN, Blatter LA (2014) Cardiac alternans and intracellular calcium cycling. Clin Exp Pharmacol Physiol 41:524–532

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Eisner DA, Diaz ME, Li Y, O'Neill SC, Trafford AW (2005) Stability and instability of regulation of intracellular calcium. Exp Physiol 90:3–12

    CAS  PubMed  Google Scholar 

  22. Eisner DA, Li Y, O'Neill SC (2006) Alternans of intracellular calcium: mechanism and significance. Heart Rhythm 3:743–745

    PubMed  Google Scholar 

  23. Euler DE (1999) Cardiac alternans: mechanisms and pathophysiological significance. Cardiovasc Res 42:583–590

    CAS  PubMed  Google Scholar 

  24. Feinberg WM, Blackshear JL, Laupacis A, Kronmal R, Hart RG (1995) Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications. Arch Intern Med 155:469–473

    CAS  PubMed  Google Scholar 

  25. Florea SM, Blatter LA (2010) The role of mitochondria for the regulation of cardiac alternans. Front Physiol 1:141

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Florea SM, Blatter LA (2012) Regulation of cardiac alternans by beta-adrenergic signaling pathways. Am J Phys Heart Circ Phys 303:H1047–H1056. https://doi.org/10.1152/ajpheart.00384.2012

    Article  CAS  Google Scholar 

  27. Franz MR, Jamal SM, Narayan SM (2012) The role of action potential alternans in the initiation of atrial fibrillation in humans: a review and future directions. Europace 14(Suppl 5):v58–v64. https://doi.org/10.1093/europace/eus273

    Article  PubMed  PubMed Central  Google Scholar 

  28. Franzini-Armstrong C, Jorgensen AO (1994) Structure and development of E-C coupling units in skeletal muscle. Annu Rev Physiol 56:509–534. https://doi.org/10.1146/annurev.ph.56.030194.002453

    Article  CAS  PubMed  Google Scholar 

  29. Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, Singer DE (2001) Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA 285:2370–2375

    CAS  PubMed  Google Scholar 

  30. Goldhaber JI, Xie LH, Duong T, Motter C, Khuu K, Weiss JN (2005) Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling. Circ Res 96:459–466

    CAS  PubMed  Google Scholar 

  31. Gordan R, Fefelova N, Gwathmey JK, Xie LH (2016) Involvement of mitochondrial permeability transition pore (mPTP) in cardiac arrhythmias: Evidence from cyclophilin D knockout mice. Cell Calcium 60:363–372. https://doi.org/10.1016/j.ceca.2016.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gyorke I, Gyorke S (1998) Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys J 75:2801–2810. https://doi.org/10.1016/S0006-3495(98)77723-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gyorke S, Terentyev D (2008) Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc Res 77:245–255. https://doi.org/10.1093/cvr/cvm038

    Article  CAS  PubMed  Google Scholar 

  34. Gyorke S, Stevens SC, Terentyev D (2009) Cardiac calsequestrin: quest inside the SR. J Physiol 587:3091–3094

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hiromoto K, Shimizu H, Furukawa Y, Kanemori T, Mine T, Masuyama T, Ohyanagi M (2005) Discordant repolarization alternans-induced atrial fibrillation is suppressed by verapamil. Circ J 69:1368–1373

    CAS  PubMed  Google Scholar 

  36. Hohendanner F, Maxwell JT, Blatter LA (2015) Cytosolic and nuclear calcium signaling in atrial myocytes: IP3-mediated calcium release and the role of mitochondria. Channels 9:129–138. https://doi.org/10.1080/19336950.2015.1040966

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hohendanner F, Walther S, Maxwell JT, Kettlewell S, Awad S, Smith GL, Lonchyna VA, Blatter LA (2015) Inositol-1,4,5-trisphosphate induced Ca2+ release and excitation-contraction coupling in atrial myocytes from normal and failing hearts. J Physiol 593:1459–1477. https://doi.org/10.1113/jphysiol.2014.283226

    Article  CAS  PubMed  Google Scholar 

  38. Hohendanner F, DeSantiago J, Heinzel FR, Blatter LA (2016) Dyssynchronous calcium removal in heart failure-induced atrial remodeling. Am J Physiol Heart Circ Physiol 311:H1352–H1359

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoit BD (2014) Left atrial size and function: role in prognosis. J Am Coll Cardiol 63:493–505. https://doi.org/10.1016/j.jacc.2013.10.055

    Article  PubMed  Google Scholar 

  40. Huser J, Lipsius SL, Blatter LA (1996) Calcium gradients during excitation-contraction coupling in cat atrial myocytes. J Physiol 494(Pt 3):641–651

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Huser J, Bers DM, Blatter LA (1998) Subcellular properties of [Ca2+]i transients in phospholamban-deficient mouse ventricular cells. Am J Phys 274:H1800–H1811

    CAS  Google Scholar 

  42. Huser J, Wang YG, Sheehan KA, Cifuentes F, Lipsius SL, Blatter LA (2000) Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells. J Physiol 524(Pt 3):795–806

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jousset F, Tenkorang J, Vesin JM, Pascale P, Ruchat P, Rollin AG, Fromer M, Narayan SM, Pruvot E (2012) Kinetics of atrial repolarization alternans in a free-behaving ovine model. J Cardiovass Electrophysiol 23:1003–1012. https://doi.org/10.1111/j.1540-8167.2012.02336.x

    Article  Google Scholar 

  44. Kameyama M, Hirayama Y, Saitoh H, Maruyama M, Atarashi H, Takano T (2003) Possible contribution of the sarcoplasmic reticulum Ca2+ pump function to electrical and mechanical alternans. J Electrocardiol 36:125–135

    PubMed  Google Scholar 

  45. Kanaporis G, Blatter LA (2015) The Mechanisms of Calcium Cycling and Action Potential Dynamics in Cardiac Alternans. Circ Res 116:846–856. https://doi.org/10.1161/CIRCRESAHA.116.305404

    Article  CAS  PubMed  Google Scholar 

  46. Kanaporis G, Blatter LA (2016) Ca2+-activated chloride channel activity during Ca2+ alternans in ventricular myocytes. Channels (Austin) 10:507–517. https://doi.org/10.1080/19336950.2016.1207020

    Article  Google Scholar 

  47. Kanaporis G, Blatter LA (2016) Calcium-activated chloride current determines action potential morphology during calcium alternans in atrial myocytes. J Physiol 594(3):699–714. https://doi.org/10.1113/JP271887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kanaporis G, Blatter LA (2017) Membrane potential determines calcium alternans through modulation of SR Ca2+ load and L-type Ca2+ current. J Mol Cell Cardiol 105:49–58. https://doi.org/10.1016/j.yjmcc.2017.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kanaporis G, Kalik ZM, Blatter LA (2019) Action potential shortening rescues atrial calcium alternans. J Physiol 597:723–740. https://doi.org/10.1113/JP277188

    Article  CAS  PubMed  Google Scholar 

  50. Kapur N, Banach K (2007) Inositol-1,4,5-trisphosphate-mediated spontaneous activity in mouse embryonic stem cell-derived cardiomyocytes. J Physiol 581:1113–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Keizer J, Smith GD, Ponce-Dawson S, Pearson JE (1998) Saltatory propagation of Ca2+ waves by Ca2+ sparks. Biophys J 75:595–600. https://doi.org/10.1016/S0006-3495(98)77550-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Keller M, Kao JP, Egger M, Niggli E (2007) Calcium waves driven by "sensitization" wave-fronts. Cardiovasc Res 74:39–45. https://doi.org/10.1016/j.cardiores.2007.02.006

    Article  CAS  PubMed  Google Scholar 

  53. Knollmann BC (2009) New roles of calsequestrin and triadin in cardiac muscle. J Physiol 587:3081–3087

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kockskamper J, Blatter LA (2002) Subcellular Ca2+ alternans represents a novel mechanism for the generation of arrhythmogenic Ca2+ waves in cat atrial myocytes. J Physiol 545:65–79

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kockskamper J, Sheehan KA, Bare DJ, Lipsius SL, Mignery GA, Blatter LA (2001) Activation and propagation of Ca2+ release during excitation-contraction coupling in atrial myocytes. Biophys J 81:2590–2605

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kockskamper J, Zima AV, Blatter LA (2005) Modulation of sarcoplasmic reticulum Ca2+ release by glycolysis in cat atrial myocytes. J Physiol 564:697–714

    PubMed  PubMed Central  Google Scholar 

  57. Kockskamper J, Zima AV, Roderick HL, Pieske B, Blatter LA, Bootman MD (2008) Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol 45:128–147 S0022-2828(08)00451-3

    PubMed  PubMed Central  Google Scholar 

  58. Kornyeyev D, Petrosky AD, Zepeda B, Ferreiro M, Knollmann B, Escobar AL (2012) Calsequestrin 2 deletion shortens the refractoriness of Ca2+ release and reduces rate-dependent Ca2+-alternans in intact mouse hearts. J Mol Cell Cardiol 52:21–31. https://doi.org/10.1016/j.yjmcc.2011.09.020

  59. Lalani GG, Schricker AA, Clopton P, Krummen DE, Narayan SM (2013) Frequency analysis of atrial action potential alternans: a sensitive clinical index of individual propensity to atrial fibrillation. Circ Arrhythm Electrophysiol 6:859–867. https://doi.org/10.1161/CIRCEP.113.000204

    Article  PubMed  PubMed Central  Google Scholar 

  60. Laurita KR, Rosenbaum DS (2008) Cellular mechanisms of arrhythmogenic cardiac alternans. Prog Biophys Mol Biol 97:332–347 S0079-6107(08)00025-4

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Li X, Zima AV, Sheikh F, Blatter LA, Chen J (2005) Endothelin-1-induced arrhythmogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate(IP3)-receptor type 2-deficient mice. Circ Res 96:1274–1281

    CAS  PubMed  Google Scholar 

  62. Lipp P, Laine M, Tovey SC, Burrell KM, Berridge MJ, Li W, Bootman MD (2000) Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Curr Biol 10:939–942

    CAS  PubMed  Google Scholar 

  63. Mackenzie L, Bootman MD, Berridge MJ, Lipp P (2001) Predetermined recruitment of calcium release sites underlies excitation-contraction coupling in rat atrial myocytes. J Physiol 530:417–429

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mackenzie L, Bootman MD, Laine M, Berridge MJ, Thuring J, Holmes A, Li WH, Lipp P (2002) The role of inositol 1,4,5-trisphosphate receptors in Ca2+ signalling and the generation of arrhythmias in rat atrial myocytes. J Physiol 541:395–409

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Martinez-Hernandez E, Blatter LA (2020) Effect of carvedilol on atrial excitation-contraction coupling, Ca2+ release, and arrhythmogenicity. Am J Physiol Heart Circ Physiol 318:H1245–H1255. https://doi.org/10.1152/ajpheart.00650.2019

    Article  CAS  PubMed  Google Scholar 

  66. Maxwell JT, Blatter LA (2012) Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes. J Physiol 590:6037–6045. https://doi.org/10.1113/jphysiol.2012.239434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maxwell JT, Blatter LA (2017) A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca2+ during excitation-contraction coupling in atrial myocytes. J Physiol 595:3835–3845. https://doi.org/10.1113/JP273611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McNutt NS, Fawcett DW (1969) The ultrastructure of the cat myocardium. II. Atrial muscle. J Cell Biol 42:46–67

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mehrzad R, Rajab M, Spodick DH (2014) The three integrated phases of left atrial macrophysiology and their interactions. Int J Mol Sci 15:15146–15160. https://doi.org/10.3390/ijms150915146

    Article  PubMed  PubMed Central  Google Scholar 

  70. Meissner G, Henderson JS (1987) Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem 262:3065–3073

    CAS  PubMed  Google Scholar 

  71. Merchant FM, Armoundas AA (2012) Role of substrate and triggers in the genesis of cardiac alternans, from the myocyte to the whole heart: implications for therapy. Circulation 125:539–549. https://doi.org/10.1161/CIRCULATIONAHA.111.033563

    Article  PubMed  PubMed Central  Google Scholar 

  72. Merchant FM, Sayadi O, Moazzami K, Puppala D, Armoundas AA (2013) T-wave alternans as an arrhythmic risk stratifier: state of the art. Curr Cardiol Rep 15:398. https://doi.org/10.1007/s11886-013-0398-7

    Article  PubMed  PubMed Central  Google Scholar 

  73. Narayan SM, Bode F, Karasik PL, Franz MR (2002) Alternans of atrial action potentials during atrial flutter as a precursor to atrial fibrillation. Circulation 106:1968–1973

    PubMed  Google Scholar 

  74. Narayan SM, Franz MR, Clopton P, Pruvot EJ, Krummen DE (2011) Repolarization alternans reveals vulnerability to human atrial fibrillation. Circulation 123:2922–2930. https://doi.org/10.1161/CIRCULATIONAHA.110.977827

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415:219–226

    CAS  PubMed  Google Scholar 

  76. Nivala M, Qu Z (2012) Calcium alternans in a couplon network model of ventricular myocytes: role of sarcoplasmic reticulum load. Am J Phys Heart Circ Phys 303:H341–H352. https://doi.org/10.1152/ajpheart.00302.2012

    Article  CAS  Google Scholar 

  77. O’Rourke B, Blatter LA (2009) Mitochondrial Ca2+ uptake: tortoise or hare. J Mol Cell Cardiol 46:767–774 S0022-2828(08)01443-0

    PubMed  Google Scholar 

  78. Ordög B, Brutyó E, Puskás LG, Papp JG, Varró A, Szabad J, Boldogkoi Z (2006) Gene expression profiling of human cardiac potassium and sodium channels. Int J Cardiol 111:386–393. https://doi.org/10.1016/j.ijcard.2005.07.063

    Article  PubMed  Google Scholar 

  79. Oropeza-Almazan Y, Blatter LA (2020) Mitochondrial Calcium Uniporter Complex Activation Protects Against Calcium Alternans in Atrial Myocytes. Am J Physiol Heart Circ Physiol 319:H873–H881. https://doi.org/10.1152/ajpheart.00375.2020

    Article  CAS  PubMed  Google Scholar 

  80. Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS (1999) Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation 99:1385–1394

    CAS  PubMed  Google Scholar 

  81. Picht E, DeSantiago J, Blatter LA, Bers DM (2006) Cardiac alternans do not rely on diastolic sarcoplasmic reticulum calcium content fluctuations. Circ Res 99:740–748

    CAS  PubMed  Google Scholar 

  82. Qin J, Valle G, Nani A, Chen H, Ramos-Franco J, Nori A, Volpe P, Fill M (2009) Ryanodine receptor luminal Ca2+ regulation: swapping calsequestrin and channel isoforms. Biophys J 97:1961–1970. https://doi.org/10.1016/j.bpj.2009.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Qu Z, Nivala M, Weiss JN (2013) Calcium alternans in cardiac myocytes: Order from disorder. J Mol Cell Cardiol 58:100–109. https://doi.org/10.1016/j.yjmcc.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  84. Ramay HR, Jafri MS, Lederer WJ, Sobie EA (2010) Predicting local SR Ca2+ dynamics during Ca2+ wave propagation in ventricular myocytes. Biophys J 98:2515–2523. https://doi.org/10.1016/j.bpj.2010.02.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Richards MA, Clarke JD, Saravanan P, Voigt N, Dobrev D, Eisner DA, Trafford AW, Dibb KM (2011) Transverse tubules are a common feature in large mammalian atrial myocytes including human. Am J Phys Heart Circ Phys 301:H1996–H2005. https://doi.org/10.1152/ajpheart.00284.2011

    Article  CAS  Google Scholar 

  86. Rinne A, Blatter LA (2010) Activation of NFATc1 is directly mediated by IP3 in adult cardiac myocytes. Am J Phys 299:H1701–H1707

    CAS  Google Scholar 

  87. Rosenbaum DS (2001) T wave alternans: a mechanism of arrhythmogenesis comes of age after 100 years. J Cardiovasc Electrophysiol 12:207–209

    CAS  PubMed  Google Scholar 

  88. Rovetti R, Cui X, Garfinkel A, Weiss JN, Qu Z (2010) Spark-induced Sparks as a mechanism of intracellular calcium alternans in cardiac myocytes. Circ Res 106:1582–1591 CIRCRESAHA.109.213975

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Schulson MN, Scriven DR, Fletcher P, Moore ED (2011) Couplons in rat atria form distinct subgroups defined by their molecular partners. J Cell Sci 124:1167–1174. https://doi.org/10.1242/jcs.080929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Scriven DR, Asghari P, Moore ED (2013) Microarchitecture of the dyad. Cardiovasc Res 98:169–176. https://doi.org/10.1093/cvr/cvt025

    Article  CAS  PubMed  Google Scholar 

  91. Shah SR, Park K, Alweis R (2019) Long QT syndrome: a comprehensive review of the literature and current evidence. Curr Probl Cardiol 44:92–106. https://doi.org/10.1016/j.cpcardiol.2018.04.002

    Article  PubMed  Google Scholar 

  92. Sheehan KA, Blatter LA (2003) Regulation of junctional and non-junctional sarcoplasmic reticulum calcium release in excitation-contraction coupling in cat atrial myocytes. J Physiol 546:119–135

    CAS  PubMed  Google Scholar 

  93. Sheehan KA, Zima AV, Blatter LA (2006) Regional differences in spontaneous Ca2+ spark activity and regulation in cat atrial myocytes. J Physiol 572:799–809

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Shkryl VM, Blatter LA (2013) Ca2+ release events in cardiac myocytes up close: insights from fast confocal imaging. PLoS One 8:e61525. https://doi.org/10.1371/journal.pone.0061525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shkryl VM, Maxwell JT, Blatter LA (2012) A novel method for spatially complex diffraction-limited photoactivation and photobleaching in living cells. J Physiol 590:1093–1100 jphysiol.2011.223446

    CAS  PubMed  Google Scholar 

  96. Shkryl VM, Maxwell JT, Domeier TL, Blatter LA (2012) Refractoriness of sarcoplasmic reticulum Ca release determines Ca alternans in atrial myocytes. Am J Physiol Heart Circ Physiol 302:H2310–H2320 ajpheart.00079.2012

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Smith RM, Visweswaran R, Talkachova I, Wothe JK, Tolkacheva EG (2013) Uncoupling the mitochondria facilitates alternans formation in the isolated rabbit heart. Am J Physiol Heart Circ Physiol 305:H9–H18. https://doi.org/10.1152/ajpheart.00915.2012

    Article  CAS  PubMed  Google Scholar 

  98. Smyrnias I, Mair W, Harzheim D, Walker SA, Roderick HL, Bootman MD (2010) Comparison of the T-tubule system in adult rat ventricular and atrial myocytes, and its role in excitation-contraction coupling and inotropic stimulation. Cell Calcium 47:210–223. https://doi.org/10.1016/j.ceca.2009.10.001

    Article  CAS  PubMed  Google Scholar 

  99. Sobie EA, Song LS, Lederer WJ (2005) Local recovery of Ca2+ release in rat ventricular myocytes. J Physiol 565:441–447

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Stern MD, Song LS, Cheng H, Sham JS, Yang HT, Boheler KR, Rios E (1999) Local control models of cardiac excitation-contraction coupling. A possible role for allosteric interactions between ryanodine receptors. J Gen Physiol 113:469–489

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Szentesi P, Pignier C, Egger M, Kranias EG, Niggli E (2004) Sarcoplasmic reticulum Ca2+ refilling controls recovery from Ca2+-induced Ca2+ release refractoriness in heart uscle. Circ Res 95:807–813

    CAS  PubMed  Google Scholar 

  102. Ter Keurs HE, Boyden PA (2007) Calcium and arrhythmogenesis. Physiol Rev 87:457–506 87/2/457

    PubMed  PubMed Central  Google Scholar 

  103. Terentyev D, Viatchenko-Karpinski S, Gyorke I, Volpe P, Williams SC, Gyorke S (2003) Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: mechanism for hereditary arrhythmia. Proc Natl Acad Sci U S A 100:11759–11764

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Trafford AW, Clarke JD, Richards MA, Eisner DA, Dibb KM (2013) Calcium signalling microdomains and the t-tubular system in atrial mycoytes: potential roles in cardiac disease and arrhythmias. Cardiovasc Res 98:192–203. https://doi.org/10.1093/cvr/cvt018

    Article  CAS  PubMed  Google Scholar 

  105. Verrier RL, Fuller H, Justo F, Nearing BD, Rajamani S, Belardinelli L (2016) Unmasking atrial repolarization to assess alternans, spatiotemporal heterogeneity, and susceptibility to atrial fibrillation. Heart Rhythm 13:953–961. https://doi.org/10.1016/j.hrthm.2015.11.019

    Article  PubMed  Google Scholar 

  106. Walker ML, Rosenbaum DS (2003) Repolarization alternans: implications for the mechanism and prevention of sudden cardiac death. Cardiovasc Res 57:599–614

    CAS  PubMed  Google Scholar 

  107. Wang Z, Yue L, White M, Pelletier G, Nattel S (1998) Differential distribution of inward rectifier potassium channel transcripts in human atrium versus ventricle. Circulation 98:2422–2428. https://doi.org/10.1161/01.cir.98.22.2422

    Article  CAS  PubMed  Google Scholar 

  108. Weiss JN, Karma A, Shiferaw Y, Chen PS, Garfinkel A, Qu Z (2006) From pulsus to pulseless: the saga of cardiac alternans. Circ Res 98:1244–1253

    CAS  PubMed  Google Scholar 

  109. Weiss JN, Nivala M, Garfinkel A, Qu Z (2011) Alternans and arrhythmias: from cell to heart. Circ Res 108:98–112 108/1/98

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Woo SH, Cleemann L, Morad M (2003) Spatiotemporal characteristics of junctional and nonjunctional focal Ca2+ release in rat atrial myocytes. Circ Res 92:e1–e11

    CAS  PubMed  Google Scholar 

  111. Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH, Bers DM (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116:675–682

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Xie LH, Sato D, Garfinkel A, Qu Z, Weiss JN (2008) Intracellular Ca alternans: coordinated regulation by sarcoplasmic reticulum release, uptake, and leak. Biophys J 95:3100–3110 S0006-3495(08)78450-9

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zima AV, Blatter LA (2004) Inositol-1,4,5-trisphosphate-dependent Ca2+ signalling in cat atrial excitation-contraction coupling and arrhythmias. J Physiol 555:607–615

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zima AV, Kockskamper J, Mejia-Alvarez R, Blatter LA (2003) Pyruvate modulates cardiac sarcoplasmic reticulum Ca2+ release in rats via mitochondria-dependent and -independent mechanisms. J Physiol 550:765–783

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zima AV, Bare DJ, Mignery GA, Blatter LA (2007) IP3-dependent nuclear Ca2+ signalling in the mammalian heart. J Physiol 584:601–611. https://doi.org/10.1113/jphysiol.2007.140731

  116. Zima AV, Bovo E, Bers DM, Blatter LA (2010) Ca2+ spark-dependent and -independent sarcoplasmic reticulum Ca2+ leak in normal and failing rabbit ventricular myocytes. J Physiol 588:4743–4757 jphysiol.2010.197913

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Institutes of Health grants HL057832 (LAB), HL128330 (KB), HL132871 (LAB, KB), and HL134781 (LAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Blatter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is published as part of the Special Issue on “Fairytales of Calcium Signal Dynamics in Cardiac Myocytes and Fibroblasts: Mechanisms and Therapeutics”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blatter, L.A., Kanaporis, G., Martinez-Hernandez, E. et al. Excitation-contraction coupling and calcium release in atrial muscle. Pflugers Arch - Eur J Physiol 473, 317–329 (2021). https://doi.org/10.1007/s00424-020-02506-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02506-x

Keywords

Navigation