Skip to main content
Log in

Effect of aluminum on secondary recrystallization texture and magnetic properties of grain-oriented silicon steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The slab low-temperature reheating grain-oriented silicon steel was prepared in the laboratory, and the high-temperature annealing interruption tests were carried out. The effects of aluminum (which meant acid-soluble aluminum) on the grain size texture, precipitate, magnetic properties and their correlations were studied. The results showed that with the increase in aluminum element, the grain size decreased, while the intensity of {114}<481> and {111}<112> textures increased in the primary recrystallization structure. Meanwhile, the pinning force during the secondary recrystallization and the onset secondary recrystallization temperature were increased. The precipitates were concluded to have a more important role on determining the onset secondary recrystallization temperature than the primary grain size. The higher onset temperature resulted in sharper Goss texture and the better magnetic properties, but when the aluminum content came up to a certain extent, a fine-grain structure was developed. The most suitable aluminum content for present study was 0.025 wt.%, while the onset secondary recrystallization temperature and the primary texture were considered to be conducive to the sharpness of Goss texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.Q. Bao, Y. Xu, G. Zhao, X.B. Huang, H. Xiao, C. Ye, N. Song, Q. Chang, J. Iron Steel Res. Int. 24 (2017) 91–96.

    Article  Google Scholar 

  2. Z.Z. He, Y. Zhao, H.W. Luo, Electrical steel, Metallurgical Industry Press, Beijing, China, 2012.

    Google Scholar 

  3. Y.J. Fu, Q.W. Jiang, B.C. Wang, P. Yang, W.X. Jin, J. Iron Steel Res. Int. 20 (2013) No. 11, 105–110.

    Article  Google Scholar 

  4. X.C. Wang, Q. Yang, Y.Z. Sun, J. Iron Steel Res. Int. 22 (2015) 185–191.

    Article  Google Scholar 

  5. C. Ling, L. Xiang, S.T. Qiu, Y. Gan, J. Iron Steel Res. Int. 21 (2014) 690–694.

    Article  Google Scholar 

  6. C.C. Liao, C.K. Hou, J. Magn. Magn. Mater. 322 (2010) 434–442.

    Article  Google Scholar 

  7. T. Kumano, T. Haratani, N. Fujll, ISIJ Int. 45 (2005) 95–100.

    Article  Google Scholar 

  8. B. Fu, H.J. Wang, J.X. Yan, L. Xiang, S. Qiu, G. Cheng, J. Iron Steel Res. Int. 23 (2016) 573–579.

    Article  Google Scholar 

  9. Z.S. Xia, Y.L. Kang, Q.L. Wang, J. Magn. Magn. Mater. 320 (2008) 3229–3233.

    Article  Google Scholar 

  10. J. Li, Y. Sun, Y. Zhao, X.J. Yu, B. Li, Iron and Steel 42 (2007) No. 10, 72–75.

    Google Scholar 

  11. T. Kumano, Y. Ohata, N. Fujii, Y. Ushigami, T. Takeshita, J. Magn. Magn. Mater. 304 (2006) e602–e607.

    Article  Google Scholar 

  12. Y. Luo, W.L. Li, Y.F. Li, Y.Z. Chen, M.Q. Chen, Acta Metall. Sin. 17 (1981) No. 3, 243–252, 262–264.

  13. B.W. Zhou, Effect of acid soluble aluminium and sulphur content on inhibitors precipitation and microstructural evolution in low temperature grain-oriented silicon steel, Wuhan University of Science and Technology, Wuhan, China, 2017.

    Google Scholar 

  14. F.L. de Alcântara, R.A.N.M. Barbosa, M.A. da Cunha, ISIJ Int. 53 (2013) 1211–1214.

    Article  Google Scholar 

  15. C.S. Li, H. Yang, Y.F. Wang, Y.M. Yu, J. Iron Steel Res. Int. 17 (2010) No. 12, 46–53.

    Article  Google Scholar 

  16. C. Ling, S.T. Qiu, L. Xiang, Y. Gan, J. Superconduct. Novel Magn. 27 (2014) 1539–1546.

    Article  Google Scholar 

  17. L. Xiang, Z. Rong, B. Fu, H.J. Wang, S.T. Qiu, J. Iron Steel Res. Int. 24 (2017) 1215–1222.

    Article  Google Scholar 

  18. G.T. Liu, Z.Q. Liu, P. Yang, W.M. Mao, J. Iron Steel Res. Int. 23 (2016) 1234–1242.

    Article  Google Scholar 

  19. M. Hillert, Acta Metall. 36 (1988) 3177–3181.

    Article  Google Scholar 

  20. M. Oyarzábal, A. Martínez-de-Guerenu, I. Gutiérrez, Mater. Sci. Eng. A 485 (2008) 200–209.

    Article  Google Scholar 

  21. Z.Q. Liu, P. Yang, W.M. Mao, F.E. Cui, Acta Metall. Sin. 51 (2015) 769–776.

    Google Scholar 

  22. H. Homma, S. Nakamura, N. Yoshinaga, Mater. Sci. Forum 467–470 (2004) 269–274.

    Article  Google Scholar 

  23. Y. Ushigami, T. Kubota, N. Takahashi, ISIJ Int. 38 (1998) 553–558.

    Article  Google Scholar 

  24. J. Harase, R. Shimizu, J.K. Kim, J. SooWoo, Met. Mater. 5 (1999) 429–435.

    Article  Google Scholar 

  25. T. Kumano, T. Haratani, Y. Ushigami, ISIJ Int. 42 (2002) 440–449.

    Article  Google Scholar 

  26. H.K. Park, C.S. Park, T.W. Na, C.H. Han, N.M. Hwang, Mater. Trans. 53 (2012) 658–661.

    Article  Google Scholar 

  27. M.Q. Yan, H. Qian, P. Yang, H.J. Song, Y.Y. Shao, W.M. Mao, Acta Metall. Sin. 48 (2012) 16–22.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Yu Zhao of Central Iron and Steel Research Institute for helpful discussions on topics related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Wang, Xh., Li, J. et al. Effect of aluminum on secondary recrystallization texture and magnetic properties of grain-oriented silicon steel. J. Iron Steel Res. Int. 28, 479–487 (2021). https://doi.org/10.1007/s42243-020-00517-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00517-7

Keywords

Navigation