Skip to main content
Log in

Weak Coupling between Light and Matter in Photonic Crystals Based on Porous Silicon Responsible for the Enhancement of Fluorescence of Quantum Dots under Two-Photon Excitation

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The development of optical and, in particular, photoluminescent sensors is currently becoming more and more significant because of their universality, selectivity, and high sensitivity ensuring their wide applications in practice. The efficiency of existing photoluminescent sensors can be increased by using photoluminescent nanomaterials and hybrid nanostructures. For biological applications of photoluminescent sensors, it is extremely relevant to excite photoluminescence in the near infrared spectral range, which allows excluding the effect of autofluorescence of biomolecules and ensuring a deeper penetration of radiation into biological tissues. In this work, it has been studied how the spectral and kinetic parameters of photoluminescence change under two-photon excitation of semiconductor quantum dots incorporated into a one-dimensional photonic crystal, a porous silicon microcavity. It has been shown that the formation of a weak coupling between an exciton transition in quantum dots and an eigenmode of the microcavity enhances the photoluminescence of quantum dots. It is important that quantum dots placed in the porous silicon matrix hold a sufficiently large cross section for two-photon absorption, which makes it possible to efficiently excite their exciton states up to saturation without reaching powers leading to the photothermic destruction of the structure of porous silicon and to the disappearance of the weak coupling effect. It has been demonstrated that the radiative recombination rate under the two-photon excitation of the system consisting of quantum dots and the microcavity increases by a factor of 4.3; it has been shown that this increase is due to the Purcell effect. Thus, fabricated microcavities based on 1D porous silicon crystals allow controlling the quantum yield of photoluminescence of quantum dots under two-photon excitation, which opens prospects for the development of new photoluminescent sensors based on quantum dots operating in the near infrared spectral range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Tokranova, S. W. Novak, J. Castracane, and I. A. Levitsky, J. Phys. Chem. C 117, 22667 (2013).

    Article  Google Scholar 

  2. D. Dovzhenko, K. Mochalov, I. Vaskan, I. Kryukova, Y. Rakovich, and I. Nabiev, Opt. Express 27, 4077 (2019).

    Article  ADS  Google Scholar 

  3. H. Qiao, B. Guan, T. Böcking, M. Gal, J. J. Gooding, and P. J. Reece, Appl. Phys. Lett. 96, 161106 (2010).

    Article  ADS  Google Scholar 

  4. C. Becker, S. Burger, C. Barth, P. Manley, K. Jäger, D. Eisenhauer, G. Köppel, P. Chabera, J. Chen, K. Zheng, and T. Pullerits, ACS Photon. 5, 4668 (2018).

    Article  Google Scholar 

  5. S. N. A. Jenie, S. Pace, B. Sciacca, R. D. Brooks, S. E. Plush, and N. H. Voelcker, ACS Appl. Mater. Interfaces 6, 12012 (2014).

    Article  Google Scholar 

  6. X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, Appl. Phys. Lett. 103, 1 (2013).

    Google Scholar 

  7. H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, Opt. Quantum Electron. 24, S245 (1992).

    Article  Google Scholar 

  8. M. Pelton, Nat. Photon. 9, 427 (2015).

    Article  ADS  Google Scholar 

  9. S. Arshavsky-Graham, N. Massad-Ivanir, E. Segal, and S. Weiss, Anal. Chem. 91, 441 (2019).

    Article  Google Scholar 

  10. C. Fenzl, T. Hirsch, and O. S. Wolfbeis, Angew. Chem. Int. Ed. 53, 3318 (2014).

    Article  Google Scholar 

  11. S. Mariani, V. Robbiano, L. M. Strambini, A. Debrassi, G. Egri, L. Dähne, and G. Barillaro, Nat. Commun. 9, 5256 (2018).

    Article  ADS  Google Scholar 

  12. V. Robbiano, G. M. Paternò, A. A. La Mattina, S. G. Motti, G. Lanzani, F. Scotognella, and G. Barillaro, ACS Nano 12, 4536 (2018).

    Article  Google Scholar 

  13. D. Threm, Y. Nazirizadeh, and M. Gerken, J. Biophoton. 5, 601 (2012).

    Article  Google Scholar 

  14. C. Pacholski, Sensors 13, 4694 (2013).

    Article  Google Scholar 

  15. M. B. de la Mora, M. Ocampo, R. Doti, J. E. Lugo, and J. Faubert, in State of the Art in Biosensors — General Aspects (InTech, London, 2013).

    Google Scholar 

  16. A. M. Smith, M. C. Mancini, and S. Nie, Nat. Nanotechnol. 4, 710 (2009).

    Article  ADS  Google Scholar 

  17. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, Annu. Rev. Biomed. Eng. 2, 399 (2000).

    Article  Google Scholar 

  18. H. Hafian, A. Sukhanova, M. Turini, P. Chames, D. Baty, M. Pluot, J. H. M. Cohen, I. Nabiev, and J.-M. Millot, Nanomed. Nanotechnol. Biol. Med. 10, 1701 (2014).

    Article  Google Scholar 

  19. V. Krivenkov, P. Samokhvalov, D. Solovyeva, R. Bilan, A. Chistyakov, and I. Nabiev, Opt. Lett. 40, 1440 (2015).

    Article  ADS  Google Scholar 

  20. V. Krivenkov, P. Samokhvalov, and I. Nabiev, Biosens. Bioelectron. 137, 117 (2019).

    Article  Google Scholar 

  21. V. Krivenkov, P. Samokhvalov, M. Zvaigzne, I. Martynov, A. Chistyakov, and I. Nabiev, J. Phys. Chem. C 122, 15761 (2018).

    Article  Google Scholar 

  22. W. G. J. H. M. van Sark, P. L. T. M. Frederix, A. A. Bol, H. C. Gerritsen, and A. Meijerink, Chem. Phys. Chem. 3, 871 (2002).

    Article  Google Scholar 

  23. P. Linkov, P. Samokhvalov, K. Vokhmintsev, M. Zvaigzne, V. A. Krivenkov, and I. Nabiev, JETP Lett. 109, 112 (2019).

    Article  ADS  Google Scholar 

  24. V. Krivenkov, P. Samokhvalov, D. Dyagileva, A. Karaulov, and I. Nabiev, ACS Photon. 7, 831 (2020).

    Article  Google Scholar 

  25. R. Scott, A. W. Achtstein, A. Prudnikau, A. Antanovich, S. Christodoulou, I. Moreels, M. Artemyev, and U. Woggon, Nano Lett. 15, 4985 (2015).

    Article  ADS  Google Scholar 

  26. P. Samokhvalov, P. Linkov, J. Michel, M. Molinari, and I. Nabiev, Proc. SPIE 8955, 89550S (2014).

    Article  ADS  Google Scholar 

  27. M. J. Sailor, in Porous Silicon in Practice: Preparation, Characterization and Applications (Wiley-VCH, Weinheim, 2011), p. 76.

    Book  Google Scholar 

  28. D. Dovzhenko, I. Martynov, P. Samokhvalov, E. Osipov, M. Lednev, A. Chistyakov, A. Karaulov, and I. Nabiev, Opt. Express 28, 22705 (2020).

    Article  ADS  Google Scholar 

  29. A. E. Pap, K. Kordäs, G. Toth, J. Levoska, A. Uusimäki, J. Vähäkangas, S. Leppävuori, and T. F. George, Appl. Phys. Lett. 86, 041501 (2005).

    Article  ADS  Google Scholar 

  30. D. S. Dovzhenko, I. L. Martynov, P. S. Samokhvalov, K. E. Mochalov, A. A. Chistyakov, and I. Nabiev, Proc. SPIE 9885, 988507 (2016).

    Article  Google Scholar 

  31. J. R. Lakowicz, in Principles of Fluorescence Spectroscopy (Springer, New York, 2006).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Nabiev.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 9, pp. 584–590.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-20121) and the Russian Science Foundation (project no. 20-13-00358, development of approaches to the synthesis and functionalization of quantum dots for their use in cavities).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kriukova, I.S., Krivenkov, V.A., Samokhvalov, P.S. et al. Weak Coupling between Light and Matter in Photonic Crystals Based on Porous Silicon Responsible for the Enhancement of Fluorescence of Quantum Dots under Two-Photon Excitation. Jetp Lett. 112, 537–542 (2020). https://doi.org/10.1134/S0021364020210079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020210079

Navigation