Skip to main content
Log in

Performance Enhancement of Gaussian Minimum Shift Keying Using Optimum Phase Sampling Technique for Turbulent Free-Space Optical Communication

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, analytical performances of Gaussian minimum shift keying (GMSK) are studied for free space optical communication system. Authors propose an innovative sampling technique called, optimum phase sampling technique to investigate the bit error performance of GMSK modulation. Subsequently, performances of GMSK like, bit error rate (BER), power spectral density, and adjacent carrier interference (ACI) have also been investigated and compared with other modulation techniques. Furthermore, return to zero (RZ) coding input bit stream prior to GMSK technique improves the ACI performance of GMSK. To end with, we present the improvement of degradation parameter (γ) in a tabular form through phase sampling technique. Moreover, both optimum phase sampling and narrow pulse shaping of RZ-GMSK obtains near optimal result of BER. The numerical results show, that the proposed phase sampled RZ-GMSK of 70% duty cycle at BT = 0.6 has a degradation value of 0.979, which is comparable to GMSK at BT = . Moreover, the proposed RZ-GMSK achieves lower ACI value and has an error rate of 7 × 10−7, which is lower than the GMSK of 1 × 10−6 BER value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Majumdar, K. (2005). Free-space laser communication performance in the atmospheric channel. Journal of Optical and Fiber Communications Reports, 2(4), 345–396. https://doi.org/10.1007/s10297-005-0054-0.

    Article  Google Scholar 

  2. Karp, S., Gagliardi, R. M., Moran, S. E., et al. (1988). Optical channels: Fibers, clouds, water and atmosphere. New York, NY: Plenum. https://doi.org/10.1007/978-1-4899-0806-3.

    Book  Google Scholar 

  3. Strickland, B. R., Lavan, M. J., Woodbridge, E., et al. (1999). Effect of fog on the bit-error rate of a free-space laser communication system. Applied Optics, 38(3), 424–431. https://doi.org/10.1364/AO.38.000424.

    Article  Google Scholar 

  4. Zhu, X., & Kahn, J. M. (2002). Free-space optical communication through atmospheric turbulence channels. IEEE Transactions on Communications, 50(8), 1293–1300. https://doi.org/10.1109/TCOMM.2002.800829.

    Article  Google Scholar 

  5. Popoola, W. O., & Ghassemlooy, Z. (2009). BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence. Journal of Lightwave Technology, 27(8), 967–973. https://doi.org/10.1109/JLT.2008.2004950.

    Article  Google Scholar 

  6. Sahoo, P. K., Prajapati, Y. K., & Tripathi, R. (2020). Hybrid mapped optical-OFDM using nonlinear companding technique for indoor visible light communication application. IET Communications, 14(17), 3073–3079. https://doi.org/10.1049/iet-com.2020.0041.

    Article  Google Scholar 

  7. Dubey, D., Prajapati, Y. K., & Tripathi, R. (2020). Error performance analysis of PPM-and FSK-based hybrid modulation scheme for FSO satellite downlink. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-020-02404-7.

    Article  Google Scholar 

  8. Murota, K., & Hirade, K. (1981). GMSK modulation for digital mobile radio telephony. IEEE Transactions on Communications. https://doi.org/10.1109/tcom.1981.1095089.

    Article  Google Scholar 

  9. Barry, J. R. (1994). Wireless infrared communications. New York, NY: Springer. https://doi.org/10.1007/978-1-4615-2700-8.

    Book  Google Scholar 

  10. Chan, H. H., Sterckx, K. L., Elmirghani, J. M., et al. (1998). Performance of optical wireless OOK and PPM systems under the constraints of ambient noise and multipath dispersion. IEEE Communications Magazine, 36(12), 83–87. https://doi.org/10.1109/35.735882.

    Article  Google Scholar 

  11. Luong, D. A., Pham, A. T., & Thang, T. C. (2013). Effect of avalanche photodiode and thermal noises on the performance of binary phase-shift keying subcarrier- intensity modulation/free-space optical systems over turbulence channels. IET Communications, 7(8), 738–744. https://doi.org/10.1049/iet-com.2012.0600.

    Article  Google Scholar 

  12. Li, J., Liu, J. Q., & Taylor, D. P. (2007). Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels. IEEE Transactions on Communications, 55(8), 1598–1606. https://doi.org/10.1109/TCOMM.2007.902592.

    Article  Google Scholar 

  13. Liu, H., Liao, R., Wei, Z., et al. (2015). BER analysis of a hybrid modulation scheme based on PPM and MSK subcarrier intensity modulation. IEEE Photonics Journal, 7(4), 7201510–7201520. https://doi.org/10.1109/JPHOT.2015.2449265.

    Article  Google Scholar 

  14. Sahoo, P. K., Yadav, A. K., Prajapati, Y. K., & Tripathi, R. (2019). Phase-sampled detection of hybrid modulation impaired by gamma-gamma turbulence. Microwave and Optical Technology Letters, 61, 2182–2189.

    Article  Google Scholar 

  15. Ma, J., Jiang, Y., Yu, S., et al. (2010). Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground to satellite optical communications. Optics Communications, 283(2), 237–242. https://doi.org/10.1016/j.optcom.2009.10.007.

    Article  Google Scholar 

  16. Sahoo, P. (2018). Error rate analysis of phase sampled RZ-GMSK over turbulent FSO channel. Journal of Optical Communications. https://doi.org/10.1515/joc-2018-0179.

    Article  Google Scholar 

  17. Elnoubi, S. M. (1986). Analysis of GMSK with discriminator detection in mobile radio channels. IEEE Transactions on Vehicular Technology, 35(2), 71–76. https://doi.org/10.1109/t-vt.1986.24073.

    Article  Google Scholar 

  18. Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2012). Optical wireless communications: System and channel modeling with MATLAB. New York, NY: CRC. ISBN 978-1-4398-5235-4.

  19. Stubber, G. L. (2011). Principles of mobile communication (3rd ed., pp. 260–261). New York: Springer. ISBN 978-1-4757-6268-6.

    Google Scholar 

  20. Aulin, T., & Sundberg, C. E. (1983). An easy way to calculate power spectra for digital FM. IEE Proceedings F Communications, Radar and Signal Processing, 130(6), 519–526. https://doi.org/10.1049/ip-f-1.1983.0082.

    Article  Google Scholar 

  21. Rowe, M. (2002). BER measurements reveal network health. EDN network. Retrieved from https://www.edn.com/design/test-and-measurement/4381984/BER-measurements-reveal-network-health. Accessed 1 July 2002.

  22. Bouchet, O. (2013). Wireless optical communication. Hoboken, NJ: Wiley. ISBN 9781118563274.

  23. Tan, P., & Beaulieu, N. C. (2004). Reduced ICI in OFDM systems using the “better than” raised cosine pulse. IEEE Communications Letters, 8(3), 135–137. https://doi.org/10.1109/LCOMM.2004.825725.

    Article  Google Scholar 

  24. Hario, F., Maulana, E., Pramono, S. H., Sari, S. N., & Al Junaedi, A. M. (2019). Design of OFDM-FSO communication system on high data rate for tropical climate region. In International conference on advanced technologies for communications (ATC), Hanoi, Vietnam (pp. 74–78). https://doi.org/10.1109/atc.2019.8924543.

  25. Shieh, W., & Djordjevic, I. (2010). OFDM principles: OFDM for optical communications (1st ed., pp. 44–47). New York: Elsevier. ISBN 978-0-12-374879-9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogendra Kumar Prajapati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Following parameters, considered for numerical simulations are given below in detail.

$$ {\text{Aperture}}\;{\text{area}}\;{\text{of}}\;{\text{receiving}}\;{\text{photodetector}}\;({\text{A}}) = \frac{{\uppi{\text{D}}^{2} }}{4} $$
$$ {\text{Effective}}\;{\text{noise}}\;{\text{bandwidth}}\;(\Delta f) = R_{b} /2 $$
$$ {\text{Strength}}\;{\text{of}}\;{\text{turbulence}}\;({\text{C}}_{\text{n}}^{2} ) = 2.5 \times 10^{ - 15} {\text{m}}^{ - 2/3} \;{\text{and}}\;7.5 \times 10^{ - 15} {\text{m}}^{ - 2/3} $$
$$ {\text{Excess}}\;{\text{noise}}\;{\text{factor}}\;F_{A} = k_{A} G + \left( {1 - k_{A} } \right)\left( {2 - \frac{1}{G}} \right) . $$
Table 2 Values of parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, P.K., Prajapati, Y.K. & Tripathi, R. Performance Enhancement of Gaussian Minimum Shift Keying Using Optimum Phase Sampling Technique for Turbulent Free-Space Optical Communication. Wireless Pers Commun 118, 855–872 (2021). https://doi.org/10.1007/s11277-020-08047-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-08047-x

Keywords

Navigation