Skip to main content
Log in

Experimental Studies on Arsenic Removal Efficiencies Through Adsorption Using Different Natural Adsorbents

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

With the aim of exploring a locally available suitable adsorbent for arsenic removal, this paper presents investigations on arsenic removal characteristics of different natural sand samples. Arsenic removal characteristics of naturally available samples were compared with a commercial sample. Kinetic experiments revealed that with higher dose concentration (5 g in 50 mL arsenic contaminated water). TGS, Skye sand and GFH sand reduced the initial arsenic concentration of 500 μg/L to below 10 μg/L within 2 h. Through adsorption batch experiments, it was found that with lower dose concentrations (≤ 2.5 g in 50 mL), among all the samples tested Skye sand naturally found in Victoria (Australia) has the highest arsenic removal efficiency. Further kinetic analysis was conducted with Skye sand, which reveals that the equilibrium data of kinetic experiment can be represented with a pseudo-first-order equation. Adsorption isotherm analysis reveals that arsenic adsorption isotherm of Skye sand can be well-expressed by the Langmuir model. Moreover, it is found that with the presence of 1 mmol/L phosphate (at pH 7.0), arsenic adsorption capacity of Skye sand is reduced by about 45%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alam, M. Z., & Anwar, A. H. M. F. (2020). Nutrients adsorption onto biochar and alum sludge for treating stormwater. Journal of Water and Environment Technology, 18(2), 132–146.

    Google Scholar 

  • Altundogan, H., Altundogan, S., Tumen, F., & Bildik, M. (2002). Arsenic adsorption from aqueous solutions by activated red mud. Waste Management, 22, 357–363.

    CAS  Google Scholar 

  • Anjum, A., Lokeswari, P., Kaur, M., & Datta, M. (2011). Removal of As (III) from aqueous solutions using montmorillonite, Journal of Analytical Sciences. Methods and Instrumentation, 1(2), 25–30.

    CAS  Google Scholar 

  • Asere, T. G., Stevens, C. V., & Laing, G. D. (2019). Use of (modified) natural adsorbents for arsenic remediation: a review. Science of the Total Environment., 676, 706–720.

    CAS  Google Scholar 

  • Badruzzaman, M., Westerhoff, P., & Knappe, D. R. (2004). Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH). Water Research, 38(18), 4002–4012.

    CAS  Google Scholar 

  • Bertocchi, A., Ghiani, M., Peretti, R., & Zucca, A. (2006). Red mud and fly ash for the remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn. Journal of Hazardous Materials B, 134, 112–119.

    CAS  Google Scholar 

  • Bhardwaj, A., Rajput, R. and Misra, K. (2019) Status of arsenic remediation in India, in “Advances in Water Purification Techniques”, S. Ahuja (Ed.), Chapter 9, Elsevier, ISBN: 9780128147900, DOI: /https://doi.org/10.1016/B978-0-12-814790-0.00009-0.

  • Biswas, W. K., & Cooling, D. (2013). Sustainability assessment of red sand as a substitute for virgin sand and crushed limestone. Journal of Industrial Ecology, 17(5), 756–762.

    CAS  Google Scholar 

  • Bundschuh, J., Bhattacharya, P., Sracek, O., Mellano, M. F., Ramírez, A. E., Storniolo, A. D. R., Martín, R. A., Cortés, J., Litter, M. I., & Jean, J.-S. (2011). Arsenic removal from groundwater of the Chaco-Pampean Plain (Argentina) using natural geological materials as adsorbents. Journal of Environmental Science and Health, Part A, 46(11), 1297–1310.

    CAS  Google Scholar 

  • Callegari, A., Ferronato, N., Rada, E. C., Capodaglio, A. G., & Torretta, V. (2018). Assessment of arsenic removal efficiency by an iron oxide-coated sand filter process. Environmental Science and Pollution Research, 25, 26135–26143.

    CAS  Google Scholar 

  • Cashion, J. D., Khan, S. A., Patti, A. F., Adeloju, S., & Gates, W. P. (2017). Mechanism of groundwater arsenic removal by goethite-coated mineral sand. Hyperfine Interact, 238, 101. https://doi.org/10.1007/s10751-017-1472-0.

    Article  CAS  Google Scholar 

  • Deliyanni, E., Bakoyannakis, D., Zouboulis, A., & Matis, K. (2003). Sorption of As(V) ions by akaganéite-type nanocrystals. Chemosphere, 50, 155–163.

    CAS  Google Scholar 

  • DeMarco, M., SenGupta, A. K., & Greenleaf, J. (2003). Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Research, 37, 164–176.

    CAS  Google Scholar 

  • Deschamps, E., Cimnelli, V., & Holl, W. (2005). Removal of As(III) and As(V) from water using a natural Fe and Mn enriched sample. Water Research, 39, 5212–5220.

    CAS  Google Scholar 

  • Dutta, P., Ray, A., Sharma, V., & Millero, F. (2004). Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 278, 270–275.

    CAS  Google Scholar 

  • Elena, A. L., Ines, A., Rafael, C., & Maria, B. (2016). Arsenic(V) adsorption-desorption in agricultural and mine soils: effects of organic matter addition and phosphate competition. Environmental Pollution, 216, 71–79.

    Google Scholar 

  • Faust, S.D. and Aly, O.M. (1987) Adsorption processes for water treatment, Butterworth-Heinemann Publisher, ISBN 978–0–409-90000-2.

  • Genc-Fuhrman, H., Bergnhoj, H., & McConchie, D. (2005). Arsenate removal from water using sand-red mud columns. Water Research, 39, 2944–2954.

    CAS  Google Scholar 

  • Ghimire, K., Inoue, K., Yamaguchi, H., Makino, K., & Miyajima, T. (2003). Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Research, 34, 4945–4953.

    Google Scholar 

  • Glaister, B. J., Fletcher, T. D., Cook, P. L. M., & Hatt, B. E. (2014). Co-optimisation of phosphorus and nitrogen removal in stormwater biofilters: The role of filter media, vegetation and saturated zone. Water Science and Technology, 69(9), 1961–1969.

    CAS  Google Scholar 

  • Gupta, V. K., Saini, V. K., & Jain, N. (2005). Adsorption of As(III) from aqueous solutions by iron oxide-coated sand. Journal of Colloid and Interface Science, 288(1), 55–60.

    CAS  Google Scholar 

  • Haque, N., Morrison, G., Cano-Aguilera, I., & Gardea-Torresdey, J. L. (2008). Iron-modified light expanded clay aggregates for the removal of arsenic(V) from groundwater. Microchemical Journal, 88(1), 7–13.

    CAS  Google Scholar 

  • Harmayani, K. D., & Anwar, A. H. M. F. (2016). Adsorption kinetics and equilibrium study of nitrogen species onto radiata pine (Pinus radiata) sawdust. Water Science & Technology, 74(2), 402–415.

    CAS  Google Scholar 

  • Hlavay, J., & Polyak, K. (2005). Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water. Journal of Colloid and Interface Science, 284, 71–77.

    CAS  Google Scholar 

  • Imteaz, M. A., Ahmed, M. Y., Khan, M. S., & Ahsan, A. (2016). A simple clogging and back-washing efficiency model for filtration of arsenic-contaminated water. Desalination and Water Treatment, 57(26), 12237–12243.

    CAS  Google Scholar 

  • Jegadeesan, G., Al-Abed, S. R., Sundaram, V., Choi, H., Scheckel, K. G., & Dionysiou, D. D. (2010). Arsenic sorption on TiO2 nanoparticles: Size and crystallinity effects. Water Research, 44(3), 965–973.

    CAS  Google Scholar 

  • Jing, C., Meng, X., Liu, S., Baidas, S., Patraju, R., Christodoulatus, C., & Korfiatis, C. (2005). Surface complexation of organic arsenic on nanocrystalline titanium dioxide. Journal of Colloid and Interface Science, 290, 14–21.

    CAS  Google Scholar 

  • Khan, S.A. (2017) Removal of arsenic from drinking water by natural adsorbents, PhD Thesis, Monash University, Melbourne, Australia.

  • Kundu, S., & Gupta, A. (2005). Analysis and modeling of fixed bed column operations on As(V) removal by adsorption onto iron oxide-coated cement (I0CC). Journal of Colloid and Interface Science, 290, 52–60.

    CAS  Google Scholar 

  • Lakshmipathiraj, P., Narasimhan, B. R. V., Prabhakar, S., & Bhaskar Raju, G. (2006). Adsorption of arsenate on synthetic goethite from aqueous solutions. Journal of Hazardous Materials, 136(2), 281–287.

    CAS  Google Scholar 

  • Lenoble, V., Laclautre, C., Serpaud, B., Deluchat, V., & Bollinger, J. (2004). As(V) retention and As(III) simultaneous oxidation and removal on Mn02 loaded polystyrene resin. Science of The Total Environment, 326, 197–207.

    CAS  Google Scholar 

  • López, I.C. (2007) Microbial transformation of arsenic and organoarsenic compounds in anaerobic environments, PhD Thesis, The University of Arizona, USA.

  • Loukidou, M., Matis, K., Zouboulls, A., & Liakopoulou-Kyriakidou, M. (2003). Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Research, 37, 4544–4552.

    CAS  Google Scholar 

  • Luxton, T. P., Eick, M. J., & Rimstidt, D. J. (2008). The role of silicate in the adsorption/desorption of arsenite on goethite. Chemical Geology, 252(3–4), 125–135.

    CAS  Google Scholar 

  • Maiti, A., Thakur, B. K., Basu, J. K., & De, S. (2013). Comparison of treated laterite as arsenic adsorbent from different locations and performance of best filter under field conditions. Journal of Hazardous Materials, 262, 1176–1186.

    CAS  Google Scholar 

  • Majumder, C. (2018). Arsenic(V) Removal using activated Alumina: kinetics and modeling by response surface. Journal of Environmental Engineering, 144(3). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001337.

  • Mar, K. K., Karnawati, D., Sarto, S., Putra, D. P. E., Igarashi, T., & Tabelin, C. B. (2013). Comparison of arsenic adsorption on lignite, bentonite, shale, and iron sand from Indonesia. Procedia Earth and Planetary Science, 6, 242–250.

    CAS  Google Scholar 

  • Nicomel, N. R., Leus, K., Folens, K., Voort, P. V. D., & Laing, G. D. (2016). Technologies for arsenic removal from water: current status and future perspectives. International Journal of Environmental Research and Public Health, 13(62), 1–24.

    Google Scholar 

  • Pokhrel, D., & Viraraghavan, T. (2006). Arsenic removal from an aqueous solution by a modified fungal biomass. Water Research, 40(3), 549–552.

    CAS  Google Scholar 

  • Robles, A. S., Saldaña-Robles, A., Márquez-Herrera, A., & Ruiz-Aguilar, G. M. L. (2018). Adsorption of arsenic on granular ferric hydroxide (GEH®). Impact of initial concentration of arsenic(V) on kinetics and equilibrium state. Environment Protection Engineering, 44(3), 51. https://doi.org/10.5277/epe180304.

    Article  Google Scholar 

  • Shakoor, M. B., Nawaz, R., Hussain, F., Raza, M., & Ali, S. (2017). Human health implications, risk assessment and remediation of As-contaminated water: a critical review. Science of the Total Environment, 601(602), 756–769.

    Google Scholar 

  • Sperlich, A., Werner, A., Genz, A., Amy, C., Worch, E., & Jekel, I. (2005). Breakthrongh behavior of granular ferric hydroxide (C PH) fixed- bed adsorption filters: modeling and experimental approaches. Water Research, 39, 1190–1198.

    CAS  Google Scholar 

  • Strawn, D. G. (2018). Review of interactions between phosphorus and arsenic in soils from four case studies. Geochemical Transactions, 19(10). https://doi.org/10.1186/s12932-018-0055-6.

  • Swan, C. C. (2016). Grain size distributions and soil particle characteristics; Class notes, University of Iowa. http://user.engineering.uiowa.edu/~swan/courses/53030/notes/gsd.pdf. Accessed 5 Jan 2021.

  • Takaijudin, H., Ghani, A. A., & Zakaria, N. A. (2016). Challenges and developments of bioretention facilities in treating urban stormwater runoff; a review. Pollution, 2(4), 489–508. https://doi.org/10.7508/pj.2016.04.010.

    Article  Google Scholar 

  • Tchamdjou, W. H. J., Grigoletto, S., Michel, F., Courard, L., Abidi, M. L., & Cherradia, T. (2017). An investigation on the use of coarse volcanic scoria as sand in Portland cement mortar. Case Studies in Construction Materials, 7, 191–206.

    Google Scholar 

  • Vaclavikova, M., Matik, M., Jakabsky, S., & Hredzak, S. (2005). Preparation and sorption properties of Fe-nanomaterials for removal of arsenic from waters. In: Book of abstract of NATO CCMS on Clean Products and Processes, Norway, pp. 13.

  • Vaishya, R. C., & Gupta, S. K. (2003). Arsenic removal from groundwater by iron impregnated sand. Journal of Environmental Engineering, 129(1), 89–92.

    CAS  Google Scholar 

  • Villela-Martínez, D. E., Leyva-Ramos, R., Aragón-Piña, A., & Navarro-Tovar, R. (2020). Arsenic elimination from water solutions by adsorption on bone char. Effect of operating conditions and removal from actual drinking water. Water, Air and Soil Pollution, 231, 201. https://doi.org/10.1007/s11270-020-04596-w.

    Article  CAS  Google Scholar 

  • Weber, W. (1972). Physicochemical processes for water quality control. New York: John Wiley & Sons, Inc. ISBN 9780471924357.

    Google Scholar 

  • Xia, M., & Sanjayan, J. (2016). Method of formulating geopolymer for 3D printing for construction applications. Materials and Design, 110, 382–390.

    CAS  Google Scholar 

  • Yao, S., Liu, Z., & Shi, Z. (2014). Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite. Journal of Environmental Health Science and Engineering, 12(1).

  • Yuh-Shan, H. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1), 171–177.

    Google Scholar 

  • Zhang, W., Singh, P., Paling, E., & Delides, S. (2004). Arsenic removal from contaminated water by natural iron ores. Minerals Engineering, 17(4), 517–524.

    CAS  Google Scholar 

  • Zouboulis, A. I., & Katsoyiannis, I. A. (2005). Recent advances in the bioremediation of arsenic-contaminated groundwaters. Environment International, 31(2), 213–219.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monzur Alam Imteaz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.A., Imteaz, M.A. Experimental Studies on Arsenic Removal Efficiencies Through Adsorption Using Different Natural Adsorbents. Water Air Soil Pollut 232, 16 (2021). https://doi.org/10.1007/s11270-020-04977-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04977-1

Keywords

Navigation