Skip to main content

Advertisement

Log in

Valorising Slags from Non-ferrous Metallurgy into Hybrid Cementitious Binders: Mix Design and Performance

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The environmental impact of ordinary Portland cement (OPC) can be decreased by using alternative precursors, such as non-ferrous metallurgy slags (NFMS), which can be alkali-activated to form an inorganic polymer binder (IP). However, an IP demands the use of a high molarity alkali-solution, which is expensive, has a relative high environmental footprint and limits the use of superplasticizers. In order to tackle these challenges, hybrid binders are proposed, which consist mainly of NFMS, a minor amount of OPC and are activated with a low molarity NaOH solution, in which the superplasticizers can be used effectively. A self-compacting hybrid paste with high early-age strength was developed step-by-step by investigating the effect of different amounts of raw materials on the reactivity, identified by semi-adiabatic calorimetry, and strength development. The obtained optimal hybrid binder formulation was (in wt%) 70 NFMS, 10 ground granulated blast furnace slag, 10 OPC, 8 limestone, 0.9 NaOH, 0.8 plasticizer and 0.3 bassanite; for a water-powder ratio of 0.19, the compressive strength was 20, 41 and 61 MPa at 1, 7 and 28 days, respectively. This study demonstrated that a hybrid binder can be produced from mainly NFMS, which can increase their valorisation potential.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Andrew, R.M.: Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data (2019). https://doi.org/10.5194/essd-11-1675-2019

    Article  Google Scholar 

  2. Curry, K.C.: Mineral commodity summaries. Cement. https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-cement.pdf (2020). Accessed 28 May 2020

  3. Eurostat Regional Yearbook. Eurostat, Luxembourg (2019)

  4. Siddique, R., Khan, M.I.: Supplementary cementing materials. Engineering materials. Springer, Berlin (2011)

    Book  Google Scholar 

  5. Kosmatka, S.H., Wilson, M.L.: Design and control of concrete mixtures: the guide to applications, methods, and materials, 15th edn. In: Kosmatka, S.H., Kerkhoff, B., Panarese, W.C. (eds.) Engineering bulletin, vol. 001. Portland Cement Association, Skokie (2011)

    Google Scholar 

  6. Bouasker, M., Mounanga, P., Turcry, P., Loukili, A., Khelidj, A.: Chemical shrinkage of cement pastes and mortars at very early age: effect of limestone filler and granular inclusions. Cem. Concr. Compos. (2008). https://doi.org/10.1016/j.cemconcomp.2007.06.004

    Article  Google Scholar 

  7. Dhir, R.K., de Brito, J., Mangabhai, R.J., Lye, C.Q.: Sustainable construction materials. In: Dhir, R.K., de Brito, J., Mangabhai, R., Lye, C.Q. (eds.) Copper slag. Woodhead Publishing, Oxford (2016)

    Google Scholar 

  8. Jones, P.T., Geysen, D., Tielemans, Y., van Passel, S., Pontikes, Y., Blanpain, B., Quaghebeur, M., Hoekstra, N.: Enhanced Landfill Mining in view of multiple resource recovery: a critical review. J. Cleaner Prod. (2013). https://doi.org/10.1016/j.jclepro.2012.05.021

    Article  Google Scholar 

  9. Murari, K., Siddique, R., Jain, K.K.: Use of waste copper slag, a sustainable material. J. Mater. Cycles Waste Manag. (2015). https://doi.org/10.1007/s10163-014-0254-x

    Article  Google Scholar 

  10. Provis, J.L., van Deventer, J.S.J.: Alkali activated materials, vol. 13. Springer, Netherlands (2014)

    Book  Google Scholar 

  11. Machiels, L., Arnout, L., Yan, P., Jones, P.T., Blanpain, B., Pontikes, Y.: Transforming enhanced landfill mining derived gasification/vitrification glass into low-carbon inorganic polymer binders and building products. J. Sustain. Metall. (2017). https://doi.org/10.1007/s40831-016-0105-1

    Article  Google Scholar 

  12. Hertel, T., Blanpain, B., Pontikes, Y.: A proposal for a 100 % use of bauxite residue towards inorganic polymer mortar. J. Sustain. Metall. (2016). https://doi.org/10.1007/s40831-016-0080-6

    Article  Google Scholar 

  13. Onisei, S., Lesage, K., Blanpain, B., Pontikes, Y.: Early age microstructural transformations of an inorganic polymer made of fayalite slag. J. Am. Ceram Soc. (2015). https://doi.org/10.1111/jace.13548

    Article  Google Scholar 

  14. Komnitsas, K., Zaharaki, D., Perdikatsis, V.: Geopolymerisation of low calcium ferronickel slags. J. Mater. Sci. (2007). https://doi.org/10.1007/s10853-006-0529-2

    Article  Google Scholar 

  15. Sakkas, K., Nomikos, P., Sofianos, A., Panias, D.: Utilisation of FeNi-Slag for the production of inorganic polymeric materials for construction or for passive fire protection. Waste Biomass Valori. (2014). https://doi.org/10.1007/s12649-013-9278-z

    Article  Google Scholar 

  16. Peys, A.: Inorganic polymers from CaO–FeO–SiO2 slag: Processing, Reaction Mechanism and Molecular Structure. KU Leuven, Leuven (2018)

    Google Scholar 

  17. Siakati, C., Douvalis, A.P., Ziogas, P., Peys, A., Pontikes, Y.: Impact of the solidification path of FeOx–SiO2 slags on the resultant inorganic polymers. J. Am. Ceram. Soc. (2020). https://doi.org/10.1111/jace.16869

    Article  Google Scholar 

  18. Simon, S., Gluth, G.J.G., Peys, A., Onisei, S., Banerjee, D., Pontikes, Y.: The fate of iron during the alkali-activation of synthetic (CaO)FeOx–SiO2 slags: an Fe K-edge XANES study. J. Am. Ceram. Soc. (2018). https://doi.org/10.1111/jace.15354

    Article  Google Scholar 

  19. Habert, G., Ouellet-Plamondon, C.: Recent update on the environmental impact of geopolymers. RILEM Lett. Tech. (2016). https://doi.org/10.21809/rilemtechlett.2016.6

    Article  Google Scholar 

  20. Turner, L.K., Collins, F.G.: Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. (2013). https://doi.org/10.1016/j.conbuildmat.2013.01.023

    Article  Google Scholar 

  21. Peys, A., Arnout, L., Blanpain, B., Rahier, H., van Acker, K., Pontikes, Y.: Mix-design parameters and real-life considerations in the pursuit of lower environmental impact inorganic polymers. Waste Biomass Valori. (2018). https://doi.org/10.1007/s12649-017-9877-1

    Article  Google Scholar 

  22. Ascensão, G., Beersaerts, G., Marchi, M., Segata, M., Faleschini, F., Pontikes, Y.: Shrinkage and mitigation strategies to improve the dimensional stability of CaO-FeOx-Al2O3-SiO2 inorganic polymers. Materials (2019). https://doi.org/10.3390/ma12223679

    Article  Google Scholar 

  23. Palacios, M., Puertas, F.: Stability of superplasticizer and shrinkage reducing admixtures in high basic media. Mater. Constr. 54, 65–87 (2004)

    Google Scholar 

  24. Palacios, M., Houst, Y.F., Bowen, P., Puertas, F.: Adsorption of superplasticizer admixtures on alkali-activated slag pastes. Cem. Concr. Res. (2009). https://doi.org/10.1016/j.cemconres.2009.05.005

    Article  Google Scholar 

  25. Fernández-Jiménez, A., Garcia-Lodeiro, I., Donatello, S., Maltseva, O., Palomo, Á.: Specific examples of hybrid alkaline cement. MATEC Web Conf. (2014). https://doi.org/10.1051/matecconf/20141101001

    Article  Google Scholar 

  26. Garcia-Lodeiro, I., Maltseva, O., Palomo, Á., Fernández-Jiménez, A.: Hybrid alkaline cements. Part I: Fundamentals. Rev. Rom. Mat. 42, 330–335 (2012)

    Google Scholar 

  27. Garcia-Lodeiro, I., Taboada, V.C., Fernández-Jiménez, A., Palomo, Á.: Recycling industrial by-products in hybrid cements: mechanical and microstructure characterization. Waste Biomass Valori. (2017). https://doi.org/10.1007/s12649-016-9679-x

    Article  Google Scholar 

  28. Torgal, F.P., Labrincha, J., Leonelli, C., Palomo Sánchez, A., Chindaprasirt, P. (eds.): Handbook of alkali-activated cements, mortars and concretes. An overview of the chemistry of alkali-activated cement-based binders, vol. 54. Woodhead Publishing, Cambridge (2015)

    Google Scholar 

  29. Martinez-Ramirez, S., Palomo, Á.: OPC hydration with highly alkaline solutions. Adv. Cem. Res. (2001). https://doi.org/10.1680/adcr.2001.13.3.123

    Article  Google Scholar 

  30. Palomo, Á., Fernández-Jiménez, A., Kovalchuk, G., Ordoñez, L.M., Naranjo, M.C.: Opc-fly ash cementitious systems: study of gel binders produced during alkaline hydration. J. Mater. Sci. (2007). https://doi.org/10.1007/s10853-006-0585-7

    Article  Google Scholar 

  31. García-Lodeiro, I., Fernández-Jiménez, A., Palomo, A., Macphee, D.E.: Effect of calcium additions on N-A-S-H cementitious gels. J. Am. Ceram. Soc. (2010). https://doi.org/10.1111/j.1551-2916.2010.03668.x

    Article  Google Scholar 

  32. Alonso, S., Palomo, Á.: Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Mater. Lett. (2001). https://doi.org/10.1016/S0167-577X(00)00212-3

    Article  Google Scholar 

  33. Yip, C.K., Lukey, G.C., van Deventer, J.S.J.: The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. (2005). https://doi.org/10.1016/j.cemconres.2004.10.042

    Article  Google Scholar 

  34. Garcia-Lodeiro, I., Palomo, Á., Fernández-Jiménez, A., Macphee, D.E.: Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem. Concr. Res. (2011). https://doi.org/10.1016/j.cemconres.2011.05.006

    Article  Google Scholar 

  35. Fernández-Jiménez, A., Zibouche, F., Boudissa, N., García-Lodeiro, I., Abadlia, M.T., Palomo, A.: “Metakaolin-Slag-Clinker blends.” The role of Na+ or K+ as alkaline activators of theses ternary blends. J. Am. Ceram. Soc. (2013). https://doi.org/10.1111/jace.12272

    Article  Google Scholar 

  36. Machiels, L., Arnout, L., Jones, P.T., Blanpain, B., Pontikes, Y.: Inorganic polymer cement from Fe-silicate glasses: varying the activating solution to glass ratio. Waste Biomass Valori. (2014). https://doi.org/10.1007/s12649-014-9296-5

    Article  Google Scholar 

  37. Coelho, A.A.: TOPAS-Academic. A computer programme for Rietveld analysis. http://www.topas-academic.net/ (2016). Accessed 28 May 2020

  38. Lootens, D., Schumacher, M., Liard, M., Jones, S.Z., Bentz, D.P., Ricci, S., Meacci, V.: Continuous strength measurements of cement pastes and concretes by the ultrasonic wave reflection method. Constr. Build. Mater. (2020). https://doi.org/10.1016/j.conbuildmat.2019.117902

    Article  Google Scholar 

  39. Lootens, D., Lopez-Rios, J., Flatt, R., Blank, N.: Device and method for ultrasonically determining the dynamic elastic modulus of a material. Patent CA2604258A1 (2006). Accessed 28 Jan 2020

  40. Voigt, T., Akkaya, Y., Shah, S.P.: Determination of early age mortar and concrete strength by ultrasonic wave reflections. J. Mater. Civ. Eng. (2003). https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(247)

    Article  Google Scholar 

  41. Voigt, T., Sun, Z., Shah, S.P.: Comparison of ultrasonic wave reflection method and maturity method in evaluating early-age compressive strength of mortar. Cem. Concr. Compos. (2006). https://doi.org/10.1016/j.cemconcomp.2006.02.003

    Article  Google Scholar 

  42. Subramaniam, K.V., Lee, J., Christensen, B.J.: Monitoring the setting behavior of cementitious materials using one-sided ultrasonic measurements. Cem. Concr. Res. (2005). https://doi.org/10.1016/j.cemconres.2004.10.028

    Article  Google Scholar 

  43. Robeyst, N., Gruyaert, E., Grosse, C.U., de Belie, N.: Monitoring the setting of concrete containing blast-furnace slag by measuring the ultrasonic p-wave velocity. Cem. Concr. Res. (2008). https://doi.org/10.1016/j.cemconres.2008.04.006

    Article  Google Scholar 

  44. 2016 IEEE International Ultrasonics Symposium (IUS): Compact ultrasound board for measurement of concrete compressive strength. IEEE International Ultrasonics Symposium (IUS), Tours (2016)

    Google Scholar 

  45. Bentz, D.P., Arnold, J., Boisclair, M.J., Jones, S.Z., Rothfeld, P., Stutzman, P.E., Tanesi, J., Beyene, M., Kim, H., Munoz, J., Ardani, A.: Influence of aggregate characteristics on concrete performance. National Institute of Standards and Technology, Gaithersburg (2017)

    Book  Google Scholar 

  46. Lootens, D., Bentz, D.P.: On the relation of setting and early-age strength development to porosity and hydration in cement-based materials. Cem. Concr. Comp. (2016). https://doi.org/10.1016/j.cemconcomp.2016.02.010

    Article  Google Scholar 

  47. Yoon, H., Kim, Y.J., Kim, H.S., Kang, J.W., Koh, H.-M.: Evaluation of early-age concrete compressive strength with ultrasonic sensors. Sensors (2017). https://doi.org/10.3390/s17081817

    Article  Google Scholar 

  48. Bentz, D.P., Ardani, A., Barrett, T., Jones, S.Z., Lootens, D., Peltz, M.A., Sato, T., Stutzman, P.E., Tanesi, J., Weiss, W.J.: Multi-scale investigation of the performance of limestone in concrete. Constr. Build. Mater. (2015). https://doi.org/10.1016/j.conbuildmat.2014.10.042

    Article  Google Scholar 

  49. Lothenbach, B., Scrivener, K., Hooton, R.D.: Supplementary cementitious materials. Cem. Concr. Res. (2011). https://doi.org/10.1016/j.cemconres.2010.12.001

    Article  Google Scholar 

  50. Bentz, D.P., Sato, T., de La Varga, I., Weiss, W.J.: Fine limestone additions to regulate setting in high volume fly ash mixtures. Cem. Concr. Comp. (2012). https://doi.org/10.1016/j.cemconcomp.2011.09.004

    Article  Google Scholar 

  51. Scrivener, K.L., Juilland, P., Monteiro, P.J.M.: Advances in understanding the hydration of ordinary Portland cement. Cem. Concr. Res. (2015). https://doi.org/10.1016/j.cemconres.2015.05.025

    Article  Google Scholar 

  52. Pang, X.: The effect of water-to-cement ratio on the hydration kinetics of Portland cement at different temperatures. The 14th International congress on Cement Chemistry, Beijing (2015)

    Google Scholar 

  53. Bentz, D.P., Zunino, F., Lootens, D.: Chemical vs. physical acceleration of cement hydration. Concr. Inter. 38, 37–44 (2016)

    Google Scholar 

  54. Bentz, D.P., Sato, T., de La Varga, I., Weiss, W.J.: Fine limestone additions to regulate setting in high volume fly ash mixtures. Cem. Concr. Compos. (2012). https://doi.org/10.1016/j.cemconcomp.2011.09.004

    Article  Google Scholar 

  55. Iacobescu, R.I., Cappuyns, V., Geens, T., Kriskova, L., Onisei, S., Jones, P.T., Pontikes, Y.: The influence of curing conditions on the mechanical properties and leaching of inorganic polymers made of fayalitic slag. Front. Chem. Sci. Eng. (2017). https://doi.org/10.1007/s11705-017-1622-6

    Article  Google Scholar 

  56. Ghorab, H.Y., Fetouh, S.H.A.E.: The role of soldium hydroxide in the system C3A-CaSO4-H2O at 30 °C. In: Struble, L., Brown, P. (eds.) Symposium M: microstructural development during hydration of cement. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  57. Hesse, C., Goetz-Neunhoeffer, F., Neubauer, J.: A new approach in quantitative in-situ XRD of cement pastes: correlation of heat flow curves with early hydration reactions. Cem. Conc. Res. (2011). https://doi.org/10.1016/j.cemconres.2010.09.014

    Article  Google Scholar 

  58. Kumar, A., Bishnoi, S., Scrivener, K.L.: Modelling early age hydration kinetics of alite. Cem. Conc. Res. (2012). https://doi.org/10.1016/j.cemconres.2012.03.003

    Article  Google Scholar 

  59. Sandberg, P., Roberts, L.R.: Studies of cement-admixture interactions related to aluminate control by isothermal calorimetry. J. Am. Concr. Inst. (2003). https://doi.org/10.14359/12936

    Article  Google Scholar 

  60. Tambara, L.U.D., Cheriaf, M., Rocha, J.C., Palomo, Á., Fernández-Jiménez, A.: Effect of alkalis content on calcium sulfoaluminate (CSA) cement hydration. Cem. Concr. Res. (2020). https://doi.org/10.1016/j.cemconres.2019.105953

    Article  Google Scholar 

  61. Krivenko, P., Sanytsky, M., Kropyvnytska, T.: Alkali-sulfate activated blended Portland cements. Solid State Phenom. (2018). https://doi.org/10.4028/www.scientific.net/SSP.276.9

    Article  Google Scholar 

  62. Nägele, E.W.: The transient zeta potential of hydrating cement. Chem. Eng. Sci. (1989). https://doi.org/10.1016/0009-2509(89)80006-5

    Article  Google Scholar 

  63. Gräfe, M., Power, G., Klauber, C.: Bauxite residue issues III. Alkalinity and associated chemistry. Hydrometallurgy (2011). https://doi.org/10.1016/j.hydromet.2011.02.004

    Article  Google Scholar 

  64. Torréns-Martín, D., Fernández-Carrasco, L.: Effect of sulfate content on cement mixtures. Constr. Build. Mater. (2013). https://doi.org/10.1016/j.conbuildmat.2013.05.106

    Article  Google Scholar 

  65. Shi, C., Day, R.L.: A calorimetric study of early hydration of alkali-slag cements. Cem. Concr. Res. (1995). https://doi.org/10.1016/0008-8846(95)00126-W

    Article  Google Scholar 

  66. Lamberet, S.: Durability of ternary binders based on Portland cement, calcium aluminate cement and calcium sulfate. EPFL, Lausanne (2005)

    Google Scholar 

  67. Fukuhara, M., Goto, S., Asaga, K., Daimon, M., Kondo, R.: Mechanisms and kinetics of C4AF hydration with gypsum. Cem. Concr. Res. (1981). https://doi.org/10.1016/0008-8846(81)90112-5

    Article  Google Scholar 

  68. Gunay, S., Garrault, S., Nonat, A., Termkhajornkit, P. (eds.): Influence of calcium sulphate on hydration and mechanical strength of tricalcium silicate. 13 International Congress on the Chemistry of Cement, Madrid (2011)

    Google Scholar 

  69. Mancini, A., Wieland, E., Geng, G., Dähn, R., Skibsted, J., Wehrli, B., Lothenbach, B.: Fe(III) uptake by calcium silicate hydrates. J. Appl. Geochem. (2020). https://doi.org/10.3929/ethz-b-000392188

    Article  Google Scholar 

  70. Dilnesa, B.Z., Lothenbach, B., Le Saout, G., Renaudin, G., Mesbah, A., Filinchuk, Y., Wichser, A., Wieland, E.: Iron in carbonate containing AFm phases. Cem. Concr. Res. (2011). https://doi.org/10.1016/j.cemconres.2010.11.017

    Article  Google Scholar 

  71. Lothenbach, B., Matschei, T., Möschner, G., Glasser, F.P.: Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem. Concr. Res. (2008). https://doi.org/10.1016/j.cemconres.2007.08.017

    Article  Google Scholar 

  72. Plank, J., Hirsch, C.: Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cem. Concr. Res. (2007). https://doi.org/10.1016/j.cemconres.2007.01.007

    Article  Google Scholar 

  73. Zingg, A., Winnefeld, F., Holzer, L., Pakusch, J., Becker, S., Gauckler, L.: Absorption of polyelectrolytes and its influence on the rheology, zeta potential, and microstructure of various cement and hydrate phases. J. Coll. Inter. Sci. (2008). https://doi.org/10.1016/j.jcis.2008.04.052

    Article  Google Scholar 

  74. Nägele, E.: The zeta-potential of cement: part II: effect of pH-value. Cem. Concr. Res. (1986). https://doi.org/10.1016/0008-8846(86)90008-6

    Article  Google Scholar 

  75. Moghadam, H.A., Khoshbin, O.A.: Effect of water-cement ratio (w/c) on mechanical properties of self-compacting concrete (case study). Int. Scholar. Sci. Res. Innov. 6(5), 317–320 (2012)

    Google Scholar 

  76. Aïtcin, P.-C.: The importance of the water–cement and water–binder ratios. Sci. Tech. Concr. Admix. (2016). https://doi.org/10.1016/B978-0-08-100693-1.00001-1

    Article  Google Scholar 

  77. Martauz, P., Janotka, I., Strigáč, J., Bačuvčík, M.: Fundamental properties of industrial hybrid cement: utilization in ready-mixed concretes and shrinkage-reducing applications. Mater. Constr. (2016). https://doi.org/10.3989/mc.2016.04615

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tobias Hertel for its support and scientific contribution to this research. GB would like to acknowledge the Center for Resource, Recovery and Recycling (CR3) for contributing in the funding of this research (https://wp.wpi.edu/cr3/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn Beersaerts.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnout, L., Beersaerts, G., Liard, M. et al. Valorising Slags from Non-ferrous Metallurgy into Hybrid Cementitious Binders: Mix Design and Performance. Waste Biomass Valor 12, 4679–4694 (2021). https://doi.org/10.1007/s12649-020-01322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01322-9

Keywords

Navigation