Skip to main content

Advertisement

Log in

In vitro inhibitory effect of maraviroc on the association of the simian immunodeficiency virus envelope glycoprotein with CCR5

  • Short Report
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Asian macaques infected with simian immunodeficiency viruses (SIVs) isolated from African non-human primates develop a disease similar to human AIDS. SIV enters its target cells by binding to CD4 and a coreceptor, typically CCR5. Maraviroc is an entry inhibitor of human immunodeficiency virus type 1 (HIV-1) that prevents the interaction between CCR5 and the surface subunit gp120 of the viral envelope glycoprotein (Env). Thus far, the activity of maraviroc on SIV entry has been poorly studied. Here, we determined in vitro pharmacological parameters of the effect of maraviroc on the SIV Env association with CCR5. Cell-to-cell fusion inhibition assays were used to compare the susceptibility to maraviroc of the SIVsmmPBj Env-CCR5 interaction with that of HIV-1BaL Env. Analysis of dose–response curves and determination of IC50 values demonstrate that increasing concentrations of maraviroc inhibit the membrane fusion activity of SIVsmmPBj Env in a manner and to an extent similar to that of HIV-1BaL Env.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Chakrabarti L, Guyader M, Alizon M, Daniel MD, Desrosiers RC, Tiollais P, Sonigo P (1987) Sequence of simian immunodeficiency virus from macaque and its relationship to other human and simian retroviruses. Nature 328:543–547

    Article  CAS  Google Scholar 

  2. Sharp PM, Hahn BH (2011) Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med 1:a006841

    Article  Google Scholar 

  3. Evans DT, Silvestri G (2013) Nonhuman primate models in AIDS research. Curr Opin HIV AIDS 8:255–261

    PubMed  PubMed Central  Google Scholar 

  4. Clapham PR, Weiss RA (1997) Immunodeficiency viruses. Spoilt for choice of co-receptors. Nature 388:230–231

    Article  CAS  Google Scholar 

  5. Affranchino JL, González SA (2014) Understanding the process of envelope glycoprotein incorporation into virions in simian and feline immunodeficiency viruses. Viruses 6:264–283

    Article  Google Scholar 

  6. Checkley MA, Luttge BG, Freed EO (2011) HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 410:582–608

    Article  CAS  Google Scholar 

  7. Zhu P, Chertova E, Bess J Jr, Lifson JD, Arthur LO, Liu J, Taylor KA, Roux KH (2003) Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. Proc Natl Acad Sci USA 100:15812–15817

    Article  CAS  Google Scholar 

  8. Olshevsky U, Helseth E, Furman C, Li J, Haseltine W, Sodroski J (1990) Identification of individual human immunodeficiency virus type 1 gp120 amino acids important for CD4 receptor binding. J Virol 64:5701–5707

    Article  CAS  Google Scholar 

  9. Rizzuto C, Sodroski J (2000) Fine definition of a conserved CCR5-binding region on the human immunodeficiency virus type 1 glycoprotein 120. AIDS Res Hum Retroviruses 16:741–749

    Article  CAS  Google Scholar 

  10. Nolan KM, Jordan AP, Hoxie JA (2008) Effects of partial deletions within the human immunodeficiency virus type 1 V3 loop on coreceptor tropism and sensitivity to entry inhibitors. J Virol 82:664–673

    Article  CAS  Google Scholar 

  11. Chen B (2019) Molecular mechanism of HIV-1 entry. Trends Microbiol 27:878–891

    Article  CAS  Google Scholar 

  12. Veljkovic N, Vucicevic J, Tassini S, Glisic S, Veljkovic V, Radi M (2015) Preclinical discovery and development of maraviroc for the treatment of HIV. Expert Opin Drug Discov 10:671–684

    Article  CAS  Google Scholar 

  13. Kelly KM, Beck SE, Metcalf Pate KA, Queen SE, Dorsey JL, Adams RJ, Avery LB, Hubbard W, Tarwater PM, Mankowski JL (2013) Neuroprotective maraviroc monotherapy in simian immunodeficiency virus-infected macaques: reduced replicating and latent SIV in the brain. AIDS 27:F21–F28

    Article  CAS  Google Scholar 

  14. Ren Y, Li L, Wan Y, Wang W, Wang J, Chen J, Wei Q, Qin C, Xu J, Zhang X (2016) Mucosal topical microbicide candidates exert influence on the subsequent SIV infection and survival by regulating SIV-specific T-cell immune responses. J Acquir Immune Defic Syndr 71:121–129

    Article  CAS  Google Scholar 

  15. Brocca-Cofano E, Xu C, Wetzel KS, Cottrell ML, Policicchio BB, Raehtz KD, Ma D, Dunsmore T, Haret-Richter GS, Musaitif K, Keele BF, Kashuba AD, Collman RG, Pandrea I, Apetrei C (2018) Marginal effects of systemic CCR5 blockade with maraviroc on oral simian immunodeficiency virus transmission to infant macaques. J Virol 92:e00576-e618

    Article  CAS  Google Scholar 

  16. Dobard CW, Taylor A, Sharma S, Anderson PL, Bushman LR, Chuong D, Pau CP, Hanson D, Wang L, Garcia-Lerma JG, McGowan I, Rohan L, Heneine W (2015) Protection against rectal chimeric simian/human immunodeficiency virus transmission in macaques by rectal-specific gel formulations of maraviroc and tenofovir. J Infect Dis 212:1988–1995

    Article  CAS  Google Scholar 

  17. Malcolm RK, Forbes CJ, Geer L, Veazey RS, Goldman L, Klasse PJ, Moore JP (2013) Pharmacokinetics and efficacy of a vaginally administered maraviroc gel in rhesus macaques. J Antimicrob Chemother 68:678–683

    Article  CAS  Google Scholar 

  18. Veazey RS, Ketas TJ, Dufour J, Moroney-Rasmussen T, Green LC, Klasse PJ, Moore JP (2010) Protection of rhesus macaques from vaginal infection by vaginally delivered maraviroc, an inhibitor of HIV-1 entry via the CCR5 co-receptor. J Infect Dis 202:739–744

    Article  CAS  Google Scholar 

  19. Dewhurst S, Embretson JE, Anderson DC, Mullins JI, Fultz PN (1990) Sequence analysis and acute pathogenicity of molecularly cloned SIVSMM-PBj14. Nature 345:636–640

    Article  CAS  Google Scholar 

  20. Fultz PN, Zack PM (1994) Unique lentivirus-host interactions: SIVsmmPBj14 infection of macaques. Virus Res 32:205–225

    Article  CAS  Google Scholar 

  21. Du Z, Lang SM, Sasseville VG, Lackner AA, Ilyinskii PO, Daniel MD, Jung JU, Desrosiers RC (1995) Identification of a nef allele that causes lymphocyte activation and acute disease in macaque monkeys. Cell 82:665–674

    Article  CAS  Google Scholar 

  22. Manrique JM, Celma CCP, Affranchino JL, Hunter E, González SA (2001) Small variations in the length of the cytoplasmic domain of the simian immunodeficiency virus transmembrane protein drastically affect envelope incorporation and virus entry. AIDS Res Hum Retroviruses 17:1615–1624

    Article  CAS  Google Scholar 

  23. Celma CCP, Paladino MG, González SA, Affranchino JL (2007) Importance of the short cytoplasmic domain of feline immunodeficiency virus transmembrane glycoprotein for fusion activity and envelope glycoprotein incorporation into virions. Virology 366:405–414

    Article  CAS  Google Scholar 

  24. Ovejero CA, Affranchino JL, González SA (2017) Analysis of the functional compatibility of SIV capsid sequences in the context of the FIV gag precursor. PLoS ONE 12:e0177297

    Article  Google Scholar 

  25. Rauddi ML, Mac Donald CL, Affranchino JL, González SA (2011) Mapping of the self-interaction domains in the simian immunodeficiency virus Gag polyprotein. AIDS Res Hum Retroviruses 27:303–316

    Article  CAS  Google Scholar 

  26. Esteva MJ, Affranchino JL, González SA (2014) Lentiviral Gag assembly analyzed through the functional characterization of chimeric simian immunodeficiency viruses expressing different domains of the feline immunodeficiency virus capsid protein. PLoS ONE 9:e114299

    Article  Google Scholar 

  27. Affranchino JL, González SA (2006) Mutations at the C-terminus of the simian immunodeficiency virus envelope glycoprotein affect gp120-gp41 stability on virions. Virology 347:217–225

    Article  CAS  Google Scholar 

  28. González SA, Affranchino JL (2016) Processing, fusogenicity, virion incorporation and CXCR4-binding activity of a feline immunodeficiency virus envelope glycoprotein lacking the two conserved N-glycosylation sites at the C-terminus of the V3 domain. Arch Virol 161:1761–1768

    Article  Google Scholar 

  29. Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS, Wu X, Shaw GM, Kappes JC (2002) Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 46:1896–1905

    Article  CAS  Google Scholar 

  30. Chen Z, Zhou P, Ho DD, Landau NR, Marx PA (1997) Genetically divergent strains of simian immunodeficiency virus use CCR5 as a coreceptor for entry. J Virol 71:2705–2714

    Article  CAS  Google Scholar 

  31. Arthos J, Rubbert A, Rabin RL, Cicala C, Machado E, Wildt K, Hanbach M, Steenbeke TD, Swofford R, Farber JM, Fauci AS (2000) CCR5 signal transduction in macrophages by human immunodeficiency virus and simian immunodeficiency virus envelopes. J Virol 74:6418–6424

    Article  CAS  Google Scholar 

  32. Konopka K, Düzgüneş N (2002) Expression of CD4 controls the susceptibility of THP-1 cells to infection by R5 and X4 HIV type 1 isolates. AIDS Res Hum Retroviruses 8:123–131

    Article  Google Scholar 

  33. Tao B, Fultz PN (1995) Molecular and biological analyses of quasispecies during evolution of a virulent simian immunodeficiency virus, SIVsmmPBj14. J Virol 69:2031–2037

    Article  CAS  Google Scholar 

  34. Visseaux B, Charpentier C, Hurtado-Nedelec M, Storto A, Antoine R, Peytavin G, Damond F, Matheron S, Brun-Vézinet F, Descamps D, French ANRS HIV-2 Cohort (ANRS CO 05 VIH-2) (2012) In vitro phenotypic susceptibility of HIV-2 clinical isolates to CCR5 inhibitors. Antimicrob Agents Chemother 56:137–139

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JLA and SAG; methodology, JLA and SAG; validation, IG, CAO, JLA and SAG; formal analysis, IG, CAO, JLA and SAG; investigation, IG, CAO, JLA and SAG; resources, JLA and SAG; data curation, JLA and SAG; writing-original draft preparation, JLA and SAG; writing-review and editing, IG, CAO, JLA and SAG; visualization, JLA and SAG; supervision, JLA and SAG; project administration, JLA and SAG; funding acquisition, JLA and SAG.

Corresponding author

Correspondence to Silvia A. González.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Juergen A. Richt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giraudy, I., Ovejero, C.A., Affranchino, J.L. et al. In vitro inhibitory effect of maraviroc on the association of the simian immunodeficiency virus envelope glycoprotein with CCR5. Virus Genes 57, 106–110 (2021). https://doi.org/10.1007/s11262-020-01816-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-020-01816-7

Keywords

Navigation