Skip to main content
Log in

Empirical Flow Rate/Pressure Drop Relationships for Capillaries of Triangular and Rectangular Cross-Sections to be Used in Yield Stress Fluid Porosimetry

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The aim of the present work is to investigate the flow rate/pressure gradient relationship for the flow of yield stress fluids through rectilinear capillaries of non-circular cross-sections. These capillaries very often serve as basic elements in the modeling of porous media as bundles of capillaries or pore-network models. Based on the notions of shape coefficient and critical Bingham number, empirical flow rate/pressure gradient relationships have been proposed for both Bingham and Herschel–Bulkley fluids. The reliability of these relationships has been assessed by performing numerical simulations with the open-source Computational Fluid Dynamics (CFD) package OpenFOAM. For the considered cross-sectional shapes (equilateral triangle and square), and for a wide range of Bingham numbers, the predictions of the proposed empirical relationships have shown to be in very good agreement with the results of the current numerical simulations, as well as with previous results from the literature. An interesting feature of the proposed empirical relationships is the possibility to easily predict the total flow rate under a given imposed pressure gradient in a bundle of non-circular capillaries having any random distribution of inscribed circle radii. Furthermore, in the context of the yield stress fluid porosimetry method (YSM), experimental data may now be processed based upon bundles of capillaries with non-circular cross-sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and Material

The data and the details on the used material are available upon request.

References

  • Alexandrou, A.N., McGilvreay, T.M., Burgos, G.: Steady Herschel–Bulkley fluid flow in threedimensional expansions. J. Nonnewton. Fluid Mech. 100(1), 77–96 (2001)

    Article  Google Scholar 

  • Ambari, A., Benhamou, M., Roux, S., Guyon, E.: Distribution des tailles des pores d’un milieu poreux déterminée par l’écoulement d`un fluide à seuil. C.R. Acad. Sci. Paris 311(2), 1291–1295 (1990)

    Google Scholar 

  • Burgos, G.R., Alexandrou, A.N.: Flow development of Herschel–Bulkley fluids in a sudden threedimensional square expansion. J. Rheol. 43(3), 485–498 (1999)

    Article  Google Scholar 

  • Burlion, N., Bernard, D., Chen, D.: X-ray microtomography, application to microstructure analysis of a cementitious material during leaching process. Cem. Concr. Res. 36, 346–357 (2006)

    Article  Google Scholar 

  • Chhabra, R.P., Richardson, J.F.: Non-Newtonian Flow and Applied Rheology: Engineering Applications. Butterworth-Heinemann, Amsterdam (2008)

    Google Scholar 

  • Damianou, Y., Georgiou, G.C.: Viscoplastic poiseuille flow in a rectangular duct with wall slip. J. Nonnewton. Fluid Mech. 214, 88–105 (2014)

    Article  Google Scholar 

  • Damianou, Y., Philippou, M., Kaoullas, G., Georgiou, G.C.: Cessation of viscoplastic poiseuille flow with wall slip. J. Nonnewton. Fluid Mech. 203, 24–37 (2014)

    Article  Google Scholar 

  • Damianou, Y., Kaoullas, G., Georgiou, G.C.: Cessation of viscoplastic poiseuille flow in a square duct with wall slip. J. Nonnewton. Fluid Mech. 233, 13–26 (2016)

    Article  Google Scholar 

  • Rodríguez de Castro, A.: Expériences d’écoulement de fluides à seuil en milieu poreux comme nouvelle méthode de porosimétrie. Ph.D. thesis, Ecole nationale supérieure d’arts et métiers-ENSAM, France (2014)

  • Rodríguez de Castro, A., Omari, A., Ahmadi-Sénichault, A., Bruneau, D.: Toward a new method of porosimetry: principles and experiments. Transp. Porous Media 101(3), 349–364 (2014)

    Article  Google Scholar 

  • Rodríguez de Castro, A., Ahmadi-Sénichault, A., Omari, A., Savin, S., Madariaga, L.-F.: Characterizing porous media with the yield stress fluids porosimetry method. Transp. Porous Media 114(1), 213–233 (2016)

    Article  Google Scholar 

  • Rodríguez de Castro, A., Ahmadi-Sénichault, A., Omari, A.: Using xanthan gum solutions to characterize porous media with the yield stress fluid porosimetry method: robustness of the method and effects of polymer concentration. Transp. Porous Media 122(2), 357–374 (2018)

    Article  Google Scholar 

  • Gundogar, A., Ross, C., Akin, S., Kovscek, A.: Multiscale pore structure characterization of middle east carbonates. J. Petrol. Sci. Eng. 146, 570–583 (2016)

    Article  Google Scholar 

  • Herschel, W.H., Bulkley, R.: Konsistenzmessungen von gummi-benzollösungen. Colloid Polym. Sci. 39(4), 291–300 (1926)

    Google Scholar 

  • Houston, A.N., Otten, W., Falconer, R., Monga, O., Baveye, P.C., Hapca, S.M.: Quantification of the pore size distribution of soils: assessment of existing software using tomographic and synthetic 3D images. Geoderma 299, 73–82 (2017)

    Article  Google Scholar 

  • Huilgol, R.R.: A systematic procedure to determine the minimum pressure gradient required for the flow of viscoplastic fluids in pipes of symmetric cross-section. J. Nonnewton. Fluid Mech. 136(2–3), 140–146 (2006)

    Article  Google Scholar 

  • Jay, P., Magnin, A., Piau, J.M.: Numerical simulation of viscoplastic fluid flows through an axisymmetric contraction. J. Fluids Eng. 124(3), 700–705 (2002)

    Article  Google Scholar 

  • Kefayati, G., Huilgol, R.: Lattice boltzmann method for the simulation of the steady flow of a bingham fluid in a pipe of square cross-section. Eur. J. Mech.-B/Fluids 65, 412–422 (2017)

    Article  Google Scholar 

  • Lai, J., Wang, G., Wang, S., Cao, J., Li, M., Pang, X., Zhou, Z., Fan, X., Dai, Q., Yang, L., et al.: Review of diagenetic facies in tight sandstones: diagenesis, diagenetic minerals, and prediction via well logs. Earth-Sci. Rev. 185, 234–258 (2018)

    Article  Google Scholar 

  • Li, Z., Wu, S., Xia, D., He, S., Zhang, X.: An investigation into pore structure and petrophysical property in tight sandstones: a case of the Yanchang formation in the Southern Ordos Basin, China. Mar. Pet. Geol. 97, 390–406 (2018)

    Article  Google Scholar 

  • López, X.: Pore-scale modelling of non-newtonian flow. Ph.D. thesis. Imperial College London (2004)

  • López, X., Valvatne, P.H., Blunt, M.J.: Predictive network modeling of single-phase non-Newtonian flow in porous media. J. Colloid Interface Sci. 264(1), 256–265 (2003)

    Article  Google Scholar 

  • Malvault, G.: Détermination expérimentale de la distribution de taille de pores d’un milieu poreux par l’injection d’un fluide à seuil ou par analyse fréquentielle, PhD thesis, Arts et Métiers ParisTech (2013).

  • Malvault, G., Ahmadi, A., Omari, A.: Numerical simulation of yield stress fluid flow in capillary bundles: influence of the form and the axial variation in the cross section. Transp. Porous Media 120(2), 255–270 (2017)

    Article  Google Scholar 

  • Mosolov, P., Miasnikov, V.: Variational methods in the theory of the fluidity of a viscous-plastic medium. J. Appl. Math. Mech. 29(3), 545–577 (1965)

    Article  Google Scholar 

  • Mosolov, P., Miasnikov, V.: On stagnant flow regions of a viscous-plastic medium in pipes. J. Appl. Math. Mech. 30(4), 841–854 (1966)

    Article  Google Scholar 

  • Mosolov, P., Miasnikov, V.: On qualitative singularities of the flow of a viscoplastic medium in pipes: PMM vol. 31, no. 3, 1967, pp. 581–585. J. Appl. Math. Mech. 31(3), 609–613 (1967)

    Article  Google Scholar 

  • Øren, P.-E., Bakke, S.: Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media 46, 311–343 (2002)

    Article  Google Scholar 

  • Panaseti, P., Georgiou, G.C.: Viscoplastic flow development in a channel with slip along one wall. J. Nonnewton. Fluid Mech. 248, 8–22 (2017)

    Article  Google Scholar 

  • Papanastasiou, T.C.: Flows of materials with yield. J. Rheol. 31(5), 385–404 (1987)

    Article  Google Scholar 

  • Patzek, T., Silin, D.: Shape factor and hydraulic conductance in noncircular capillaries: I. One-phase creeping flow. J. Colloid Interface Sci. 236(2), 295–304 (2001)

    Article  Google Scholar 

  • Peng, S., Zhang, T., Loucks, G.L., Shultz, J.: Application of mercury injection capillary pressure to mudrocks: conformance and compression corrections. Mar. Pet. Geol. 88, 30–40 (2017)

    Article  Google Scholar 

  • Roquet, N., Saramito, P.: An adaptive finite element method for viscoplastic flows in a square pipe with stick–slip at the wall. J. Nonnewton. Fluid Mech. 155(3), 101–115 (2008)

    Article  Google Scholar 

  • Saramito, P., Roquet, N.: An adaptive finite element method for viscoplastic fluid flows in pipes. Comput. Methods Appl. Mech. Eng. 190(40–41), 5391–5412 (2001)

    Article  Google Scholar 

  • Skelland, A.H.P.: Non-Newtonian Flow and Heat Transfer. Wiley, New York (1967)

    Google Scholar 

  • Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)

    Article  Google Scholar 

  • Zhu, H., Kim, Y., De Kee, D.: Non-Newtonian fluids with a yield stress. J. Nonnewton. Fluid Mech. 129(3), 177–181 (2005)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Data collection, visualization and original draft preparation were performed by Terence Emery Mackaya. Azita Ahmadi-Sénichault, Abdelaziz Omari and Antonio Rodríguez de Castro contributed to the writing, reviewing and editing. All authors contributed to the conceptualization, methodology, investigation and analysis of the results.

Corresponding author

Correspondence to Antonio Rodríguez de Castro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mackaya, T.E., Ahmadi-Senichault, A., Omari, A. et al. Empirical Flow Rate/Pressure Drop Relationships for Capillaries of Triangular and Rectangular Cross-Sections to be Used in Yield Stress Fluid Porosimetry. Transp Porous Med 136, 587–605 (2021). https://doi.org/10.1007/s11242-020-01531-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01531-9

Keywords

Navigation