Skip to main content
Log in

Elastic \(\alpha \) transfer in the \(^{16}\hbox {O}+^{12}\hbox {C}\) scattering and its impact on the nuclear rainbow

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Elastic \(^{16}\hbox {O}+^{12}\hbox {C}\) scattering is known to exhibit the nuclear rainbow pattern at incident energies \(E_\text {lab} > rsim 200\) MeV, with the Airy structure of the far-side scattering cross section clearly seen at medium and large angles. Such a rainbow pattern is well described by the deep real optical potential (OP) given by the double-folding model (DFM). At lower energies, the extensive elastic \(^{16}\hbox {O}+^{12}\hbox {C}\) scattering data show consistently that the nuclear rainbow pattern at backward angles is deteriorated by an oscillating enhancement of elastic cross section that is difficult to describe in the conventional optical model (OM). Given a significant \(\alpha \) spectroscopic factor predicted for the dissociation \(^{16}\)O\(\rightarrow \alpha +^{12}\)C by the shell model and \(\alpha \)-cluster models, the contribution of the elastic \(\alpha \) transfer (or the core-core exchange) to the elastic \(^{16}\hbox {O}+^{12}\hbox {C}\) scattering should not be negligible and is expected to account for the enhanced elastic cross section at backward angles. To reveal the impact of the elastic \(\alpha \) transfer, a systematic coupled reaction channels analysis of the elastic \(^{16}\hbox {O}+^{12}\hbox {C}\) scattering has been performed, with the coupling between the elastic scattering and elastic \(\alpha \) transfer channels treated explicitly, using the real OP given by the DFM. We found that the elastic \(\alpha \) transfer enhances the near-side scattering significantly at backward angles, giving rise to an oscillating distortion of the smooth Airy structure. The dynamic polarization of the OP by the coupling between the elastic scattering and elastic \(\alpha \) transfer channels can be effectively taken into account in the OM calculation by an angular-momentum (or parity) dependent potential added to the imaginary OP, as suggested by Frahn and Hussein 40 years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical analysis of the published data, and all data information is properly referenced.]

References

  1. G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979)

    Article  ADS  Google Scholar 

  2. M.E. Brandan, G.R. Satchler, Phys. Rep. 285, 143 (1997)

    Article  ADS  Google Scholar 

  3. D.T. Khoa, W. von Oertzen, H.G. Bohlen, S. Ohkubo, J. Phys. G 34, R111 (2007)

    Article  Google Scholar 

  4. M.S. Hussein, K.W. McVoy, Prog. Part. Nucl. Phys. 12, 103 (1984)

    Article  ADS  Google Scholar 

  5. M.E. Brandan, M.S. Hussein, K.W. McVoy, G.R. Satchler, Comments on Nuclear and Particle Physics, vol. 22 (Gordon and Breach, New York, 1996), p. 77

    Google Scholar 

  6. S.H. Fricke, M.E. Brandan, K.W. McVoy, Phys. Rev. C 38, 682 (1988)

    Article  ADS  Google Scholar 

  7. D.M. Brink, N. Takigawa, Nucl. Phys. A 279, 159 (1977)

    Article  ADS  Google Scholar 

  8. N. Rowley, H. Doubre, C. Marty, Phys. Lett. B 69, 147 (1977)

    Article  ADS  Google Scholar 

  9. R.C. Fuller, Phys. Rev. C 12, 1561 (1975)

    Article  ADS  Google Scholar 

  10. D.T. Khoa, N.H. Phuc, D.T. Loan, B.M. Loc, Phys. Rev. C 94, 034612 (2016)

    Article  ADS  Google Scholar 

  11. E. Stiliaris, H.G. Bohlen, P. Fröbrich, B. Gebauer, D. Kolbert, W. von Oertzen, M. Wilpert, Th Wilpert, Phys. Lett. B 223, 291 (1989)

    Article  ADS  Google Scholar 

  12. M.E. Brandan, G.R. Satchler, Phys. Lett. B 256, 311 (1991)

    Article  ADS  Google Scholar 

  13. P. Roussel, N. Alamanos, F. Auger, J. Barrette, B. Berthier, B. Fernandez, L. Papineau, H. Doubre, W. Mittig, Phys. Rev. Lett. 54, 1779 (1985)

    Article  ADS  Google Scholar 

  14. M.E. Brandan, A. Menchaca-Rocha, M. Buenerd, J. Chauvin, P. De Saintignon, G. Duhamel, D. Lebrum, P. Martin, G. Perrin, J.Y. Hostachy, Phys. Rev. C 34, 1484 (1986)

    Article  ADS  Google Scholar 

  15. A.C.C. Villari, A. Lépine-Szily, R.L. Filho, O.P. Filho, M.M. Obuti, J.M. Oliveira Jr., N. Added, Nucl. Phys. A 501, 605 (1989)

    Article  ADS  Google Scholar 

  16. A.A. Ogloblin, D.T. Khoa, Y. Kondō, Y.A. Glukhov, A.S. Dem’yanova, M.V. Rozhkov, G.R. Satchler, S.A. Goncharov, Phys. Rev. C 57, 1797 (1998)

    Article  ADS  Google Scholar 

  17. A.A. Ogloblin, Y.A. Glukhov, W.H. Trzaska, A.S. Demyanova, S.A. Goncharov, R. Julin, S.V. Klebnikov, M. Mutterer, M.V. Rozhkov, V.P. Rudakov, G.P. Tiorin, D.T. Khoa, G.R. Satchler, Phys. Rev. C 62, 044601 (2000)

    Article  ADS  Google Scholar 

  18. Y.A. Glukhov, S.A. Goncharov, A.S. Demyanova, A.A. Ogloblin, M.V. Rozhkov, V.P. Rudakov, V. Trashka, Izv. Ross. Akad. Nauk, Ser. Fiz. 65, 647 (2001)

    Google Scholar 

  19. Y.A. Glukhov, V.P. Rudakov, K.P. Artemov, A.S. Demyanova, A.A. Ogloblin, S.A. Goncharov, A. Izadpanakh, Phys. At. Nucl. 70, 1 (2007)

    Article  Google Scholar 

  20. M.P. Nicoli, F. Haas, R.M. Freeman, S. Szilner, Z. Basrak, A. Morsad, G.R. Satchler, M.E. Brandan, Phys. Rev. C 61, 034609 (2000)

    Article  ADS  Google Scholar 

  21. M.E. Brandan, A. Menchaca-Rocha, L. Trache, H.L. Clark, A. Azhari, C.A. Gagliardi, Y.-W. Lui, R.E. Tribble, R.L. Varner, J.R. Beene, G.R. Satchler, Nucl. Phys. A 688, 659 (2001)

    Article  ADS  Google Scholar 

  22. D.T. Khoa, W. von Oertzen, H.G. Bohlen, Phys. Rev. C 49, 1652 (1994)

    Article  ADS  Google Scholar 

  23. D.T. Khoa, G.R. Satchler, W. von Oertzen, Phys. Rev. C 56, 954 (1997)

    Article  ADS  Google Scholar 

  24. M.E. Brandan, G.R. Satchler, Nucl. Phys. A 487, 477 (1988)

    Article  ADS  Google Scholar 

  25. D.T. Khoa, W. von Oertzen, H.G. Bohlen, F. Nuoffer, Nucl. Phys. A 672, 387 (2000)

    Article  ADS  Google Scholar 

  26. F. Michel, G. Reidemeister, S. Ohkubo, Phys. Rev. C 63, 034620 (2001)

    Article  ADS  Google Scholar 

  27. S. Ohkubo, Y. Hirabayashi, Phys. Rev. C 89, 051601(R) (2014)

    Article  ADS  Google Scholar 

  28. P. Braun-Munziger, J. Barette, Phys. Rep. 87, 209 (1982)

    Article  ADS  Google Scholar 

  29. W.E. Frahn, M.S. Hussein, Phys. Lett. 90B, 358 (1980)

    Article  ADS  Google Scholar 

  30. W.E. Frahn, M.S. Hussein, Nucl. Phys. A 346, 237 (1980)

    Article  ADS  Google Scholar 

  31. W.E. Frahn, Treaties on Heavy-Ion Science, vol. 1 (Plenum Press, New York, 1984), p. 135

    Google Scholar 

  32. N.T.T. Phuc, N.H. Phuc, D.T. Khoa, Phys. Rev. C 98, 024613 (2018)

    Article  ADS  Google Scholar 

  33. W. von Oertzen, H.G. Bohlen, Phys. Rep. 19, 1 C (1975)

    Article  ADS  Google Scholar 

  34. M.C. Morais, R. Lichtenthäler, Nucl. Phys. A 857, 1 (2011)

    Article  ADS  Google Scholar 

  35. S. Hamada, N. Burtebayev, K.A. Gridnev, N. Amangeldi, Nucl. Phys. A 859, 29 (2011)

    Article  ADS  Google Scholar 

  36. S. Szilner, W. von Oertzen, Z. Basrak, F. Haas, M. Milin, Eur. Phys. J. A 13, 273 (2002)

    Article  ADS  Google Scholar 

  37. A.T. Rudchik et al., Eur. Phys. J. A 44, 221 (2010)

    Article  ADS  Google Scholar 

  38. J. Raynal, Computing as a Language of Physics (IAEA, Vienna, 1972) p. 75; coupled-channel code ECIS97 (unpublished)

  39. A. Volya, Y.M. Tchuvilsky, Phys. Rev. C 91, 044319 (2015)

    Article  ADS  Google Scholar 

  40. T. Yamada, Y. Funaki, T. Myo, H. Horiuchi, K. Ikeda, G. Röpke, P. Schuck, A. Tohsaki, Phys. Rev. C 85, 034315 (2012)

    Article  ADS  Google Scholar 

  41. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)

    Article  ADS  Google Scholar 

  42. G.R. Satchler, Direct Nuclear Reactions (Clarendon, Oxford, 1983)

    Google Scholar 

  43. I.J. Thompson, F.M. Nunes, Nuclear Reactions for Astrophysics (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  44. N.T.T. Phuc, R.S. Mackintosh, N.H. Phuc, D.T. Khoa, Phys. Rev. C 100, 054615 (2019)

    Article  ADS  Google Scholar 

  45. R.S. Mackintosh, Eur. Phys. J. A 55, 147 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

With the results presented in this work, we would like to appreciate the essential and very valuable contribution to the nuclear scattering theory by Mahir Hussein, especially, the modeling of the dynamic polarization of the nuclear OP by nonelastic channels. The present research has been supported, in part, by the National Foundation for Science and Technology Development (NAFOSTED Project No. 103.04-2016.35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao T. Khoa.

Additional information

Communicated by Nicolas Alamanos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phuc, N.H., Khoa, D.T. & Phuc, N.T.T. Elastic \(\alpha \) transfer in the \(^{16}\hbox {O}+^{12}\hbox {C}\) scattering and its impact on the nuclear rainbow. Eur. Phys. J. A 57, 7 (2021). https://doi.org/10.1140/epja/s10050-020-00325-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00325-3

Navigation