Skip to main content
Log in

On the simulation of the Middleton Class-A noise model for single- and multi-carrier modulation in power line communication

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

We propose a novel simulation approach of the Middleton Class-A model for impulsive noise generation considering symbol-wise transmission in a real Power Line Communication environment. Then, we validate the proposed approach for both single carrier binary FSK based—and multi-carrier OFDM-based communication systems. Established analytical formulations and obtained simulation results for the impulsive noise variance distribution and the communication system error probability show that in a binary FSK system, the second order of the noise variance per symbol, as well as the error floor, are closely related to the impulsive index A. The error floor decreases when A becomes large, and its asymptotic value is equal to the Bit Error Rate (BER) for an additive white Gaussian noise channel with noise variance equal to the average variance of the impulse noise. However, in an OFDM-based system, the noise variance per symbol at the output of the demodulator, as well as the error floor in the BER curves, are fixed and independent of the impulsive index A. The proposed analysis allows us to compare binary FSK and OFDM under the same theoretical noise conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bedicks, G., Dantas, C. E. S., Sukys, F., Yamada, F., Raunheitte, L. T. M., & Akamine, C. (2005). Digital signal disturbed by impulsive noise. IEEE Transactions on Broadcasting, 51(3), 322–328.

    Article  Google Scholar 

  2. Guedes Esperante, P., Akamine, C., and Bedicks, G., (2016). Comparison of Terrestrial DTV Systems: ISDB-TB and DVB-T2 in 6 MHz. IEEE Latin America Transactions, 14(1), pp 45–56(a)

  3. Krejci, J., Zeman, T., Impulse noise influencing xDSL technologies, In IEEE 15th International Symposuim in MECHATRONICA, December 2012, (pp. 1–4 (b))

  4. Dégardin, V., Liénard, M., Zeddam, A., Gauthier, F., & Degauque, P. (2002). Classification and characterization of impulsive noise on indoor power line used for data communications. IEEE Transactions on Consumer Electronics, 48(4), 913–918.

    Article  Google Scholar 

  5. Rouissi, F., Vinck, A. J. H., Gassara, H., Ghazel, A. (2017). Statistical characterization and modelling of impulse noise on indoor narrowband PLC environment. In IEEE International Symposium on Power Line Communications and its Applications (ISPLC’ 2017) (pp. 12–17), Madrid: Spain.

  6. Gassara, H., Rouissi, F., & Ghazel, A. (2014). Statistical characterization of the indoor low-voltage narrowband power line communication channel. IEEE Transactions on Electromagnetic Compatibility, 56(1), 123–131.

    Article  Google Scholar 

  7. Shongwe, T., Vinck, A. J. H., and Ferreira, H. C. (2014). On impulse noise and its models, In IEEE International Symposium on Power Line Communications and its Applications (ISPLC’ 2014), Glasgow, United Kingdom, pp. 12–17.

  8. Middleton, D. (1999). Non-gaussian noise models in signal processing for telecommunications: New methods and results for class A and class B noise models. IEEE Trans. on Information Theory, 45(4), 1129–1149.

    Article  Google Scholar 

  9. Ghosh, M. (1996). Analysis of the effect of impulse noise on multicarrier and single carrier QAM systems. IEEE Transactions on Communications, 44(2), 145–147.

    Article  Google Scholar 

  10. Yang, F., & Zhang, X. (2016). Performances modeling for smart grid networks over impulsive bandpass AWSαSN channels. Washington, DC, USA: IEEE Globecom conference.

    Google Scholar 

  11. Katayama, M., Yamazato, T., & Okada, H. (2008). A mathematical model of noise in narrowband power line communication systems. IEEE Journal on selected area in communications, 24(7), 1267–1276.

    Article  Google Scholar 

  12. Rouissi, F., Vinck, A. J. H., Gassara, H., & Ghazel, A. (2019). Improved impulse noise modeling for indoor narrow-band power line communication. AEU—International Journal of Electronics and Communications, 103, 74–81.

    Article  Google Scholar 

  13. Ziemer, R. (1967). Error probabilities due to additive combinations of Gaussian and impulsive noise. IEEE Transactions on Communication Technology, 15(3), 471–474.

    Article  Google Scholar 

  14. Ziemer, R. (1967). Character error probabilities for M-ary signaling in impulsive noise environments. IEEE Transactions on Communication Technology, 15(1), 32–34.

    Article  Google Scholar 

  15. Huynh, H., & Lecours, M. (1975). Impulsive noise in noncoherent M-ary digital systems. IEEE Transactions on Communications, 23(2), 246–252.

    Article  Google Scholar 

  16. H¨aring J., and Vinck,A. J. H. (2000). “OFDM transmission corrupted by impulsive noise. In IEEE International Symposium on Power Line Communications and its Applications (ISPLC’ 2000), Limerick, Ireland.

  17. Amirshahi, P., Navidpour, M. S., & Kavehrad, M. (2006). Performance analysis of uncoded and coded OFDM broadband transmission over low voltage power-line channels with impulsive noise. IEEE Tranactions on Power Delivery, 21(4), 1927–1934.

    Article  Google Scholar 

  18. Suraweera, H. A., & Armstrong, J. (2004). Noise bucket effect for impulse noise in OFDM. Electronics Letters, 40(18), 1156–1157.

    Article  Google Scholar 

  19. Razazian, K., Umari, M., Kamlizad, A., Loginov, V., & Navid, M. (2010). “G3-PLC Specification for Powerline communication: Overview, System simulation and Field Trial Results”, IEEE International Symposium on Power Line Communications and its Applications (ISPLC’2010). Brail: Rio de Janero.

    Google Scholar 

  20. PRIME Project, “Draft standard for powerline-related intelligent metering evolution: physical layer specifications,” 2008.

  21. ST7570, “S-FSK power line networking system-on-chip,” ST’s product data sheet, Sep. 2012. URL: www.st.com

  22. Ndo, G., Labeau, F., & Kassouf, M. (2013). A Markov-Middleton model for bursty impulsive noise: Modelling and receiver design. IEEE Transactions on Power Delivery, 28(4), 2317–2325.

    Article  Google Scholar 

  23. Shongwe, T., Vinck, A. J. H., & Ferreira, H. C. (2015). A study on impulse noise and its models. SAIEE Africa Research Journal, 106(3), 119–131.

    Article  Google Scholar 

  24. Spaulding, A., & Middleton, D. (1977). Optimum reception in an impulsive interference environment-Part I: Coherent detection. IEEE Transactions on Communications, 25(9), 910–923.

    Article  Google Scholar 

  25. Berry, L.A. (1981). Understanding Middleton’s canonical formula for class A noise. In IEEE Transactions on electromagnetic compatibility, vol. EMC-23, no. 4, pp. 337–344, Nov. 1981.

  26. Galli, S. Scaglione, A., and Wang, Z. (2010). Power line communications and the smart grid, In IEEE International Conerence. on Smart Grid Commun. (SmartGridComm), Gaithersburg, MD.

  27. Mengi, A., and Vinck, A.J.H. (2010).“Successive impulsive noise suppression in OFDM,” In IEEE International Symposium on Power Line Communications and its Applications (ISPLC’2010), Rio de Janeiro, Brazil

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Rouissi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouissi, F., Vinck, A.J.H. & Ghazel, A. On the simulation of the Middleton Class-A noise model for single- and multi-carrier modulation in power line communication. Telecommun Syst 77, 143–153 (2021). https://doi.org/10.1007/s11235-020-00746-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00746-x

Keywords

Navigation