Skip to main content

Advertisement

Log in

A spatial functional count model for heterogeneity analysis in time

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

A spatial curve dynamical model framework is adopted for functional prediction of counts in a spatiotemporal log-Gaussian Cox process model. Our spatial functional estimation approach handles both wavelet-based heterogeneity analysis in time, and spectral analysis in space. Specifically, model fitting is achieved by minimising the information divergence or relative entropy between the multiscale model underlying the data, and the corresponding candidates in the spatial spectral domain. A simulation study is carried out within the family of log-Gaussian Spatial Autoregressive \(\ell ^{2}\)-valued processes (SAR\(\ell ^{2}\) processes) to illustrate the asymptotic properties of the proposed spatial functional estimators. We apply our modelling strategy to spatiotemporal prediction of respiratory disease mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alomari HM, Frías MP, Leonenko NN, Ruiz-Medina MD, Sakhno L, Torres A (2017) Asymptotic properties of parameter estimates for random fields with tapered data. Electron J Stat 11:3332–3367

    Article  Google Scholar 

  • Angulo JM, Ruiz-Medina MD (1997) On the orthogonal representation of generalized random fields. Stat Probab Lett 31:145–153

    Article  Google Scholar 

  • Baddeley A, Gregori P, Mateu J, Stoica R, Stoyan D (2006) Case Studies in Spatial Point Process Modeling. Springer, New York

    Book  Google Scholar 

  • Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part I: background and development. Nat Comput 6:467–484

    Article  Google Scholar 

  • Bosq D, Ruiz-Medina MD (2014) Bayesian estimation in a high dimensional parameter framework. Electron J Stat 8:1604–1640

    Article  Google Scholar 

  • Choi KM, Serre ML, Christakos G (2003) Efficient mapping of California mortality fields at different spatial scales. J Expo Anal Environ Epidomol 13:120–133

    Article  Google Scholar 

  • Christakos G (1992) Random Field Models in Earth Sciences. Academic Press, San Diego

    Google Scholar 

  • Christakos G (2000) Modern Spatiotemporal Geostatistics. Oxford University Press, New York

    Google Scholar 

  • Chirstakos G (2017) Spatiotemporal Random Fields: Theory and Applications. Elsevier, New York

    Google Scholar 

  • Christakos G, Bogaert P, Serre ML (2001) Temporal GIS. Springer, New York

    Book  Google Scholar 

  • Christakos G, Hristopulos DT (1998) Spatiotemporal Environmental Health Modelling: A Tractatus Stochasticus. Kluwer Academic Publisher, Boston

    Book  Google Scholar 

  • Christakos G, Olea RA (2005) New space-time perspectives on the propagation characteristics of the black death epidemic and its relation to bubonic plague. Stoch Env Res Risk Assess 19:307–314

    Article  Google Scholar 

  • Congdon P (2017) Representing spatial dependence and spatial discontinuity in ecological epidemiology: a scale mixture approach. Stoch Environ Res Risk Assess 31:291–304

    Article  Google Scholar 

  • Cox DR (1955) Some statistical methods connected with series of events. J R Statist Soc B 17:129–164

    Google Scholar 

  • Cronie O, Ghorbani M, Mateu J, Yu J (2020) Functional marked point processes: a natural structure to unify spatio-temporal frameworks and to analyse dependent functional data. Test. https://doi.org/10.1007/s11749-020-00730-2

    Article  Google Scholar 

  • Daley D, Vere-Jones D (2008) An Introduction to the Theory of Point Processes Vol II: General Theory and Structure 2nd Edition. Springer, New York

    Book  Google Scholar 

  • Daubechies I (1992) Ten Lectures on Wavelets. SIAM, Philadelphia

    Book  Google Scholar 

  • Diggle PJ (2013) Statistical Analysis of Spatial and Spatio-Temporal Point Patterns. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  • Diggle P, Guan Y, Hart A, Paize F, Stanton M (2010) Estimating individual-level risk in spatial epidemiology using spatially aggregated information on the population at risk. J Am Stat Assoc 105:1394–1402

    Article  CAS  Google Scholar 

  • Diggle PJ, Kaimi I, Abellana R (2010b) Partial-likelihood analysis of spatio-temporal point-process data. Biometrics 66:347–354

    Article  Google Scholar 

  • Diggle PJ, Moraga P, Rowlingson B, Taylor BM (2013) Spatial and spatio-temporal log-Gaussian Cox processes: Extending the Geostatistical paradigm. Stat Sci 28:542–563

    Article  Google Scholar 

  • Frías MP, Torres-Signes, A, Ruiz-Medina MD, Mateu, J (2020) Spatial Cox Processes in an infinite–dimensional framework. arXiv:1811.11139

  • Goia A, Vieu P (2016) An introduction to recent advances in high/infinite dimensional statistics. J Multivar Anal 146:1–6

    Article  Google Scholar 

  • Goicoa T, Ugarte MD, Etxeberria J, Militno AF (2012) Comparing CAR and P-spline models in spatial disease mapping. Environ Ecol Stat 19:573–599

    Article  Google Scholar 

  • Gonçalves FB, Gamerman D (2018) Exact bayesian inference in spatio-temporal Cox processes driven by multivariate Gaussian processes. J R Statist Soc B 80:157–175

    Article  Google Scholar 

  • González JA, Rodríguez-Cortés FJ, Cronie O, Mateu J (2016) Spatio-temporal point process statistics: A review. Spat Stat 18:505–544

    Article  Google Scholar 

  • Grandell J (1976) Doubly Stochastic Process. Springer, New York

    Book  Google Scholar 

  • Guan Y (2006) A composite likelihood approach in fitting spatial point process models. J Am Stat Assoc 101:1502–1512

    Article  CAS  Google Scholar 

  • He J, Chen G, Jiang Y, Jin R, Shortridge A, Agusti S, He M, Wu J, Duarte CM, Christakos G (2020) Comparative infection modeling and control of COVID-19 transmission patterns in China, South Korea, Italy and Iran. Sci Total Environ 747:141447. https://doi.org/10.1016/j.scitotenv.2020.141447

    Article  CAS  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for Functional Data with Applications. Springer, New York

    Book  Google Scholar 

  • Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley & Sons, New York

    Google Scholar 

  • Jalilian A, Guan Y, Waagepetersen R (2019) Orthogonal series estimation of the pair correlation function of a spatial point process. Stat Sin 29:769–787

    Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceedings of ICNN’95-International Conference on Neural Networks 4:1942–1948

  • Li Y, Brown P, Gesink DC, Rue H (2012) Log gaussian Cox processes and spatially aggregated disease incidence data. Stat Methods Med Res 21:479–507

    Article  Google Scholar 

  • Li L, Wang J, Cao Z, Zhong E (2008) An information-fusion method to identify pattern of spatial heterogeneity for improving the accuracy of estimation. Stoch Environ Res Risk Assess 22:689–704

    Article  Google Scholar 

  • Lindgren F, Rue H (2015) Bayesian spatial modelling with R-INLA. J Stat Softw 63:1–25

    Article  Google Scholar 

  • Maniglia S (2004) Gaussian measures on separable Hilbert spaces and applications. Quaderni di Matematica 1: ISBN 88-8305-010 e-ISBN 88-8305-011-8

  • Marinucci D, Peccati G (2011) Random fields on the sphere. Representation, limit theorems and cosmological applications. London Mathematical Society Lecture Note Series 389. Cambridge University Press, Cambridge

  • Møller J, Syversveen AR, Waagepetersen R (1998) Log Gaussian Cox processes. Scand J Stat 25:451–482

    Article  Google Scholar 

  • Møller J, Toftaker H (2014) Geometric anisotropic spatial point pattern analysis and Cox processes. Scand J Stat 41:414–435

    Article  Google Scholar 

  • Møller J, Waagepetersen RP (2004) Statistical Inference and Simulation for Spatial Point Processes. Chapman & Hall, London, Boca Raton

    Google Scholar 

  • Müller HG, Stadtmüller U (2005) Generalized functional linear models. Ann Statist 33:774–805

    Article  Google Scholar 

  • Ogata Y, Katsura K (1988) Likelihood analysis of spatial inhomogeneity for marked point patterns. Ann I Stat Math 40:29–39

    Article  Google Scholar 

  • Panaretos VM, Tavakoli S (2013a) Fourier analysis of stationary time series in function space. Ann Stat 41:568–603

    Article  Google Scholar 

  • Panaretos VM, Tavakoli S (2013) Cramér-Karhunen-Loéve representation and harmonic principal component analysis of functional time series. Stoch Proc Appl 123:2779–2807

    Article  Google Scholar 

  • Rathbun SL, Cressie N (1994) A space-time survival point process for a longleaf pine forest in Southern Georgia. J Am Stat Assoc 89:1164–1174

    Article  Google Scholar 

  • Rue H, Martino S, Chopin N (2009) Approximate bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B 71:319–392

    Article  Google Scholar 

  • Ruiz-Medina MD (2011) Spatial autorregresive and moving average Hilbertian processes. J Multiv Anal 102:292–305

    Article  Google Scholar 

  • Ruiz-Medina MD (2012) Spatial functional prediction from Spatial Autoregressive Hilbertian Processes. Environmetrics 23:119–128

    Article  Google Scholar 

  • Ruiz-Medina MD, Angulo JM (2002) Spatio-temporal filtering using wavelets. Stoch Environ Res Risk Assess 16:241–266

    Article  Google Scholar 

  • Salap-Ayca S, Jankowski P (2018) Analysis of the influence of parameter and scale uncertainties on a local multi-criteria land use evaluation model. Stoch Environ Res Risk Assess 32:2699–2719

    Article  Google Scholar 

  • Serra L, Saez M, Mateu J, Varga D, Juan P, Díaz-Ávalos C, Rue H (2014) Spatio-temporal log-Gaussian Cox processes for modelling wildfire occurrence: the case of Catalonia 1994–2008. Environ Ecol Stat 21:531–563

    Article  Google Scholar 

  • Simpson D, Illian JB, Lindgren F, Sorbye SH, Rue H (2016) Going off grid: computationally efficient inference for log-Gaussian Cox processes. Biometrika 103:49–70

    Article  Google Scholar 

  • Taylor BM, Andrade-Pacheco R, Sturrock HJ (2018) Continuous inference for aggregated point process data. J R Stat Soc A 181:1125–1150

    Article  Google Scholar 

  • Torres A, Frías MP, Ruiz-Medina MD (2016) Log-Gaussian Cox processes in infinite-dimensional spaces. Theor Prob Math Stat 95:157–177

    Google Scholar 

  • Vicente G, Goicoa T, Ugarte MD (2020) Bayesian inference in multivariate spatio-temporal areal models using INLA: analysis of gender-based violence in small areas. Stoch Environ Res Risk Assess 34:1421–1440

    Article  Google Scholar 

  • Waagepetersen R, Guan DY, Jalilian A, Mateu J (2016) Analysis of multispecies point patterns by using multivariate log-Gaussian Cox processes. J R Stat Soc C 65:77–96

    Article  Google Scholar 

  • Waller LA, Carlin BP, Xia H, Gelfand AE (1997) Hierarchical spatio-temporal mapping of disease rates. J Am Stat Assoc 92:607–617

    Article  Google Scholar 

  • Wu S, Müller HG, Zhang Z (2013) Functional data analysis for point processes with rare events. Stat Sin 23:1–23

    Google Scholar 

Download references

Acknowledgements

This work was supported by MCIU/AEI/ERDF, UE grant PGC2018-099549-B-I00 (M.D. Ruiz–Medina, M.P. Frías, A. Torres-Signes), PID2019-107392RB-100 (J. Mateu), and by Grant A-FQM-345-UGR18 (M.D. Ruiz–Medina, M.P. Frías, A. Torres-Signes) cofinanced by ERDF Operational Programme 2014–2020 and the Economy and Knowledge Council of the Regional Government of Andalusia, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María D. Ruiz-Medina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Signes, A., Frías, M.P., Mateu, J. et al. A spatial functional count model for heterogeneity analysis in time. Stoch Environ Res Risk Assess 35, 1825–1849 (2021). https://doi.org/10.1007/s00477-020-01951-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-020-01951-5

Keywords

Mathematics Subject Classification

Navigation