Skip to main content
Log in

On the Reflection of Torsional Alfvén Waves from the Solar Transition Region

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

On the basis of the two-layer model, we investigate the reflection of linear torsional Alfvén waves propagating in a thin magnetic flux tube from the solar transition region. As distinguished from Hollweg (Astrophys. J. 277, 392, 1984), the density jump across the transition region modeled by a sharp boundary is taken into account. A new expression for the determination of the reflection coefficient is proposed. Weakly damping Alfvén modes with periods from a few tens of seconds to a few minutes can quite effectively penetrate from the chromosphere to the corona and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References

  • Arber, T.D., Brady, C.S., Shelyag, S.: 2016, Alfvén wave heating of the solar chromosphere: 1.5D models. Astrophys. J. 817(2), 94. DOI. ADS.

    Article  ADS  Google Scholar 

  • Avrett, E.H., Loeser, R.: 2008, Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen. Astrophys. J. Suppl. 175(1), 229. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carlsson, M., De Pontieu, B., Hansteen, V.H.: 2019, New view of the solar chromosphere. Annu. Rev. Astron. Astrophys. 57, 189. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chae, J., Litvinenko, Y.E.: 2018, Linear acoustic waves in a nonisothermal atmosphere. I. Simple nonisothermal layer solution and acoustic cutoff frequency. Astrophys. J. 869(1), 36. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cranmer, S.R., van Ballegooijen, A.A.: 2005, On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere. Astrophys. J. Suppl. 156(2), 265. DOI. ADS.

    Article  ADS  Google Scholar 

  • Davila, J.M.: 1991, Resonance absorption heating (with 5 figures). In: Ulmschneider, P., Priest, E.R., Rosner, R. (eds.) Mechanisms of Chromospheric and Coronal Heating, 260. ADS.

    Google Scholar 

  • De Pontieu, B., Martens, P.C.H., Hudson, H.S.: 2001, Chromospheric damping of Alfvén waves. Astrophys. J. 558(2), 859. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Schrijver, C.J., Title, A.M., Shine, R.A., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Suematsu, Y., Shimizu, T., Nagata, S.: 2007, Chromospheric Alfvénic waves strong enough to power the solar wind. Science 318(5856), 1574. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ferraro, V.C.A.: 1954, On the reflection and refraction of Alfvén waves. Astrophys. J. 119, 393. DOI. ADS.

    Article  ADS  MathSciNet  Google Scholar 

  • Ferraro, C.A., Plumpton, C.: 1958, Hydromagnetic waves in a horizontally stratified atmosphere. V. Astrophys. J. 127, 459. DOI. ADS.

    Article  ADS  MathSciNet  Google Scholar 

  • Fletcher, L., Hudson, H.S.: 2008, Impulsive phase flare energy transport by large-scale Alfvén waves and the electron acceleration problem. Astrophys. J. 675(2), 1645. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gelfreikh, G.B., Tsap, Y.T., Kopylova, Y.G., Goldvarg, T.B., Nagovitsyn, Y.A., Tsvetkov, L.I.: 2004, Variations of microwave emission from solar active regions. Astron. Lett. 30, 489. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hansteen, V., De Pontieu, B., Carlsson, M., Lemen, J., Title, A., Boerner, P., Hurlburt, N., Tarbell, T.D., Wuelser, J.P., Pereira, T.M.D., De Luca, E.E., Golub, L., McKillop, S., Reeves, K., Saar, S., Testa, P., Tian, H., Kankelborg, C., Jaeggli, S., Kleint, L., Martínez-Sykora, J.: 2014, The unresolved fine structure resolved: IRIS observations of the solar transition region. Science 346(6207), 1255757. DOI. ADS.

    Article  Google Scholar 

  • Hollweg, J.V.: 1978, Alfvén waves in the solar atmosphere. Solar Phys. 56(2), 305. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hollweg, J.V.: 1984, Resonances of coronal loops. Astrophys. J. 277, 392. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jess, D.B., Mathioudakis, M., Erdélyi, R., Crockett, P.J., Keenan, F.P., Christian, D.J.: 2009, Alfvén waves in the lower solar atmosphere. Science 323(5921), 1582. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jess, D.B., Morton, R.J., Verth, G., Fedun, V., Grant, S.D.T., Giagkiozis, I.: 2015, Multiwavelength studies of MHD waves in the solar chromosphere. An overview of recent results. Space Sci. Rev. 190(1-4), 103. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kohutova, P., Verwichte, E., Froment, C.: 2020, First direct observation of a torsional Alfvén oscillation at coronal heights. Astron. Astrophys. 633, L6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leake, J.E., Arber, T.D., Khodachenko, M.L.: 2005, Collisional dissipation of Alfvén waves in a partially ionised solar chromosphere. Astron. Astrophys. 442(3), 1091. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leer, E., Holzer, T.E., Fla, T.: 1982, Acceleration of the solar wind. Space Sci. Rev. 33(1-2), 161. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mathioudakis, M., Jess, D.B., Erdélyi, R.: 2013, Alfvén waves in the solar atmosphere. From theory to observations. Space Sci. Rev. 175(1-4), 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ofman, L.: 2002, Chromospheric leakage of Alfvén waves in coronal loops. Astrophys. J. Lett. 568(2), L135. DOI. ADS.

    Article  ADS  Google Scholar 

  • Okamoto, T.J., De Pontieu, B.: 2011, Propagating waves along spicules. Astrophys. J. Lett. 736(2), L24. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ruderman, M.S., Verth, G., Erdélyi, R.: 2008, Transverse oscillations of longitudinally stratified coronal loops with variable cross section. Astrophys. J. 686(1), 694. DOI. ADS.

    Article  ADS  Google Scholar 

  • Russell, A.J.B., Fletcher, L.: 2013, Propagation of Alfvénic waves from corona to chromosphere and consequences for solar flares. Astrophys. J. 765(2), 81. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schwartz, S.J., Cally, P.S., Bel, N.: 1984, Chromospheric and coronal Alfvénic oscillations in non-vertical magnetic fields. Solar Phys. 92(1-2), 81. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shoda, M., Suzuki, T.K., Matt, S.P., Cranmer, S.R., Vidotto, A.A., Strugarek, A., See, V., Réville, V., Finley, A.J., Brun, A.S.: 2020, Alfvén-wave driven magnetic rotator winds from low-mass stars I: rotation dependences of magnetic braking and mass-loss rate. arXiv e-prints, arXiv. ADS.

  • Soler, R., Terradas, J., Oliver, R., Ballester, J.L.: 2017, Propagation of torsional Alfvén waves from the photosphere to the corona: reflection, transmission, and heating in expanding flux tubes. Astrophys. J. 840(1), 20. DOI. ADS.

    Article  ADS  Google Scholar 

  • Soler, R., Terradas, J., Oliver, R., Ballester, J.L.: 2019, Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun. Astrophys. J. 871(1), 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H.: 2017, Probing the solar transition region: current status and future perspectives. Res. Astron. Astrophys. 17(11), 110. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tsap, Y.T.: 2006, On the penetration of Alfvén waves from the chromosphere into the corona. In: Bothmer, V., Hady, A.A. (eds.) Solar Activity and Its Magnetic Origin, IAU Symposium 233, 253. DOI. ADS.

    Chapter  Google Scholar 

  • Tsap, Y.T., Stepanov, A.V., Kopylova, Y.G.: 2011, Energy flux of Alfvén waves in weakly ionized plasma and coronal heating of the Sun. Solar Phys. 270(1), 205. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tsap, Y.T., Stepanov, A.V., Kopylova, Y.G.: 2015, Frozen-in magnetic field lines and Alfvén wave generation in weakly ionized plasma. Solar Phys. 290(7), 1923. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tsap, Y.T., Stepanov, A.V., Kopylova, Y.G., Khaneichuk, O.V.: 2020, Characteristics of the energy transfer by Alfvén waves in the solar atmosphere. Geomagn. Aeron. 60(4), 446. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vernazza, J.E., Avrett, E.H., Loeser, R.: 1981, Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet Sun. Astrophys. J. Suppl. 45, 635. DOI. ADS.

    Article  ADS  Google Scholar 

  • Verth, G., Erdélyi, R., Goossens, M.: 2010, Magnetoseismology: eigenmodes of torsional Alfvén waves in stratified solar waveguides. Astrophys. J. 714(2), 1637. DOI. ADS.

    Article  ADS  Google Scholar 

  • Watson, G.N.: 1995, A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge. ISBN 9780521483919. https://books.google.se/books?id=Mlk3FrNoEVoC.

    MATH  Google Scholar 

  • Wentzel, D.G.: 1978, Wave reflection and wave disorder in the solar transition zone and corona. Solar Phys. 58(2), 307. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yoshida, M., Suematsu, Y., Ishikawa, R., Okamoto, T.J., Kubo, M., Kano, R., Narukage, N., Bando, T., Winebarger, A.R., Kobayashi, K., Trujillo Bueno, J., Auchère, F.: 2019, High-frequency wave propagation along a spicule observed by CLASP. Astrophys. J. 887(1), 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zaqarashvili, T.V., Khodachenko, M.L., Soler, R.: 2013, Torsional Alfvén waves in partially ionized solar plasma: effects of neutral helium and stratification. Astron. Astrophys. 549, A113. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Russian Foundation for Basic Research (project No.20-52-26006) and the Ministry of Science and Higher Education of the Russian Federation (project No.0831-2019-0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Kopylova.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsap, Y., Kopylova, Y. On the Reflection of Torsional Alfvén Waves from the Solar Transition Region. Sol Phys 296, 5 (2021). https://doi.org/10.1007/s11207-020-01753-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01753-6

Keywords

Navigation