Skip to main content
Log in

Global Effect of Non-Conservative Perturbations on Homoclinic Orbits

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We study the effect of time-dependent, non-conservative perturbations on the dynamics along homoclinic orbits to a normally hyperbolic invariant manifold. We assume that the unperturbed system is Hamiltonian, and the normally hyperbolic invariant manifold is parametrized via action-angle coordinates. The homoclinic excursions can be described via the scattering map, which gives the future asymptotic of an orbit as a function of its past asymptotic. We provide explicit formulas, in terms of convergent integrals, for the perturbed scattering map expressed in action-angle coordinates. We illustrate these formulas for perturbations of both uncoupled and coupled rotator-pendulum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. \(g(u,v)=\omega (u,Jv)\).

  2. An example is given by \(h_0(I)=I^n\) with \(n\geqslant 3\) odd, or \(h_0(I)=I_1^2 - I_2^2\).

References

  1. Baldoma, M., Fontich, E.: Poincaré-Melnikov theory for n-dimensional diffeomorphisms. Appl Math 25(2), 129–152 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Burns, Keith, Gidea, Marian: Differential Geometry and Topology: With a View to Dynamical Systems. Studies in Advanced Mathematics. Chapman Hall/CRC press, Boca Raton (2005)

    Book  Google Scholar 

  3. del Castillo-Negrete, D., Morrison, P.J.: Hamiltonian chaos and transport in quasigeostrophic flows. Chaotic dynamics and transport in fluids and plasmas. p. 181 (1992)

  4. Delshams, Amadeu, de la Llave, Rafael, Seara, Tere M.: A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of \({ T}^2\). Commun. Math. Phys. 209(2), 353–392 (2000)

    Article  Google Scholar 

  5. Delshams, A., De la Llave, R. and Seara, T.M.: A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model. Mem. Am. Math. Soc., vol. 179 no. 844. pp. viii+141 (2006)

  6. Delshams, Amadeu, de la Llave, Rafael, Seara, Tere M.: Orbits of unbounded energy in quasi-periodic perturbations of geodesic flows. Adv. Math. 202(1), 64–188 (2006)

    Article  MathSciNet  Google Scholar 

  7. Delshams, Amadeu, de la Llave, Rafael, Seara, Tere M.: Geometric properties of the scattering map of a normally hyperbolic invariant manifold. Adv. Math. 217(3), 1096–1153 (2008)

    Article  MathSciNet  Google Scholar 

  8. Delshams, Amadeu, de la Llave, Rafael, Seara, Tere M.: Instability of high dimensional Hamiltonian systems: multiple resonances do not impede diffusion. Adv. Math. 294, 689–755 (2016)

    Article  MathSciNet  Google Scholar 

  9. Delshams, A., Gutiérrez, P.: Splitting potential and Poincaré-Melnikov method for whiskered tori in Hamiltonian systems. J. Nonlinear Sci. 10(4), 433–476 (2000)

    Article  MathSciNet  Google Scholar 

  10. Delshams, A., Gutiérrez, P.: Homoclinic orbits to invariant tori in Hamiltonian systems. In: Christopher, K.R.T.J., Khibnik, A.I. (eds.) Multiple-Time-Scale Dynamical Systems (Minneapolis, MN, 1997), pp. 1–27. Springer, New York (2001)

    Google Scholar 

  11. Delshams, Amadeu, Ramírez-Ros, Rafael: Poincaré–Melnikov–Arnold method for analytic planar maps. Nonlinearity 9(1), 1–26 (1996)

    Article  MathSciNet  Google Scholar 

  12. Delshams, Amadeu, Ramírez-Ros, Rafael: Melnikov potential for exact symplectic maps. Commun. Math. Phys. 190(1), 213–245 (1997)

    Article  MathSciNet  Google Scholar 

  13. Delshams, Amadeu, Schaefer, Rodrigo G.: Arnold diffusion for a complete family of perturbations. Regular Chaotic Dyn. 22(1), 78–108 (2017)

    Article  MathSciNet  Google Scholar 

  14. Delshams, Amadeu, Schaefer, Rodrigo G.: Arnold diffusion for a complete family of perturbations with two independent harmonics. Discret. Contin. Dyn. Syst. 38(12), 6047 (2018)

    Article  MathSciNet  Google Scholar 

  15. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1971)

    Article  MathSciNet  Google Scholar 

  16. Fenichel, N.: Asymptotic stability with rate conditions. Indiana Univ. Math. J. 23, 1109–1137 (1974)

    Article  MathSciNet  Google Scholar 

  17. Gidea, Marian, de la Llave, Rafael: Perturbations of geodesic flows by recurrent dynamics. J. Eur. Math. Soc. (JEMS) 19(3), 905–956 (2017)

    Article  MathSciNet  Google Scholar 

  18. Gidea, Marian, de la Llave, Rafael: Global Melnikov theory in Hamiltonian systems with general time-dependent perturbations. J. NonLinear Sci. 28, 1657–1707 (2018)

    Article  MathSciNet  Google Scholar 

  19. Gidea, M., de la Llave, R., Seara, M.T.: A general mechanism of instability in Hamiltonian systems: skipping along a normally hyperbolic invariant manifold. Discret. Contin. Dyn. Sys. A 40(12), 6795–6813 (2020)

    Article  MathSciNet  Google Scholar 

  20. Gidea, Marian, de la Llave, Rafael: A general mechanism of diffusion in Hamiltonian systems: qualitative results. Commun. Pure Appl. Math. 73(1), 150–209 (2020)

    Article  MathSciNet  Google Scholar 

  21. Guckenheimer, John, Holmes, Philip: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. J. Appl. Mech. 51(4), 947 (1984)

    Article  Google Scholar 

  22. Granados, Albert, Hogan, Stephen John, Seara, Tere M: The Melnikov method and subharmonic orbits in a piecewise-smooth system. SIAM J. Appl. Dyn. Syst. 11(3), 801–830 (2012)

    Article  MathSciNet  Google Scholar 

  23. Granados, Albert, Hogan, Stephen John, Seara, T.M.: The scattering map in two coupled piecewise-smooth systems, with numerical application to rocking blocks. Physica D 269, 1–20 (2014)

    Article  MathSciNet  Google Scholar 

  24. Granados, Albert: Invariant manifolds and the parameterization method in coupled energy harvesting piezoelectric oscillators. Physica D 351, 14–29 (2017)

    Article  MathSciNet  Google Scholar 

  25. Holmes, P.J., Marsden, J.E.: Melnikov’s method and Arnold diffusion for perturbations of integrable Hamiltonian systems. J. Math. Phys. 23(4), 669–675 (1982)

    Article  MathSciNet  Google Scholar 

  26. Hazeltine, Richard D., Meiss, James D.: Plasma Confinement. Courier Corporation, Chelmsford (2003)

    Google Scholar 

  27. Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant Manifolds. Lecture Notes in Math, vol. 583. Springer, Berlin (1977)

    Book  Google Scholar 

  28. Kyner, W.T.: Rigorous and formal stability of orbits about an oblate planet(idealized point mass motion in axisymmetric gravitational field, discussing orbital stability about oblate planet). Am. Math. Soc. Mem., vol. 81 (1968)

  29. Lomelı, Héctor E., Meiss, James D.: Heteroclinic primary intersections and codimension one Melnikov method for volume-preserving maps. Chaos Interdiscip. J. Nonlinear Sci. 10(1), 109–121 (2000)

    Article  MathSciNet  Google Scholar 

  30. Lomelí, Héctor E., Meiss, James D., Ramírez-Ros, Rafael: Canonical Melnikov theory for diffeomorphisms. Nonlinearity 21(3), 485–508 (2008)

    Article  MathSciNet  Google Scholar 

  31. Mel’nikov, V.K.: On the stability of a center for time-periodic perturbations. Trudy Moskov. Mat. Obšč. 12, 3–52 (1963)

    MathSciNet  Google Scholar 

  32. Pesin, Yakov B.: Lectures on Partial Hyperbolicity and Stable Ergodicity. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2004)

    Book  Google Scholar 

  33. Robinson, C.: Horseshoes for autonomous Hamiltonian systems using the Melnikov integral. Ergodic Theory Dyn. Syst. 8, 395–409 (1988)

    MathSciNet  MATH  Google Scholar 

  34. Roy, Nicolas: Intersections of Lagrangian submanifolds and the Melnikov 1-form. J. Geom. Phys 56, 2203–2229 (2006)

    Article  MathSciNet  Google Scholar 

  35. Verhulst, Ferdinand: Nonlinear Differential Equations and Dynamical Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  36. Wiggins, S.: Global Bifurcations and Chaos: Analytical Methods. Appl. Math. Sci., vol. 73. Springer, New York (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Gidea.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

To the memory of Florin Diacu.

M. Gidea: Research of M.G. was partially supported by NSF Grant DMS-1814543. R. de la Llave: Research of R.L. was partially supported by NSF Grant DMS-1800241, and H2020-MCA-RISE #734577. M. Musser: Research of M.M. was partially supported by NSF Grant DMS-1814543.

Appendix A. Gronwall’s Inequality

Appendix A. Gronwall’s Inequality

In this section we apply Gronwall’s Inequality to estimate the error between the solution of an unperturbed system and the solution of the perturbed system, over a time of logarithmic order with respect to the size of the perturbation.

Theorem A.1

(Gronwall’s Inequality) Given a continuous real valued function \(\phi \geqslant 0\), and constants \(\delta _0,\delta _1\geqslant 0\), \(\delta _2>0\), if

$$\begin{aligned} \phi (t)\leqslant \delta _0+\delta _1(t-t_0)+\delta _2\int _{t_0}^{t}\phi (s)ds \end{aligned}$$
(A.1)

then

$$\begin{aligned} \phi (t)\leqslant \left( \delta _0+\frac{\delta _1}{\delta _2} \right) e^{\delta _2(t-t_0)}-\frac{\delta _1}{\delta _2}. \end{aligned}$$
(A.2)

For a reference, see, e.g., [35].

Lemma A.2

Consider the following differential equations:

$$\begin{aligned} {\dot{z}}(t)= & {} {\mathcal {X}}^0(z,t) \end{aligned}$$
(A.3)
$$\begin{aligned} {\dot{z}}(t)= & {} {\mathcal {X}}^0(z,t)+\varepsilon {\mathcal {X}}^1(z,t;\varepsilon ) \end{aligned}$$
(A.4)

Assume that \({\mathcal {X}}^0\) is Lipschitz continuous in the variable z, \(C_0\) is the Lipschitz constant of \({\mathcal {X}}^0\), and \({\mathcal {X}}^1\) is bounded with \(\Vert {\mathcal {X}}^1\Vert _{{\mathscr {C}}^0}\leqslant C_1\), for some \(C_0,C_1>0\). Let \(z_0\) be a solution of the equation (A.3) and \(z_\varepsilon \) be a solution of the equation (A.4) such that

$$\begin{aligned} \Vert z_0(t_0)-z_\varepsilon (t_0)\Vert <c\varepsilon . \end{aligned}$$
(A.5)

Then, for \(0<\varrho _0<1\), \(0<k\leqslant \frac{1-{\varrho _0}}{C_0}\), and \(K=c+\frac{C_1}{C_0}\), we have

$$\begin{aligned} \Vert z_0(t)-z_\varepsilon (t)\Vert < K\varepsilon ^{\varrho _0}, \text { for } 0\leqslant t-t_0\leqslant k\ln (1/\varepsilon ). \end{aligned}$$
(A.6)

Proof

For \(z_0\) and \(z_\varepsilon \) solutions of (A.3) and (A.4), respectively, we have

$$\begin{aligned} z_0(t)= & {} z_0(t_0)+\int _{t_0}^{t}{\mathcal {X}}^0(z_0(s),s)ds, \end{aligned}$$
(A.7)
$$\begin{aligned} z_\varepsilon (t)= & {} z_\varepsilon (t_0)+\int _{t_0}^{t}{\mathcal {X}}^0(z_\varepsilon (s),s)ds+\varepsilon \int _{t_0}^{t_1}{\mathcal {X}}^1(z_\varepsilon (s),s;\varepsilon )ds. \end{aligned}$$
(A.8)

Subtracting, we obtain

$$\begin{aligned} \Vert z_\varepsilon (t)-z_0(t)\Vert&\leqslant \Vert z_\varepsilon (t_0)-z_0(t_0)\Vert +\int _{t_0}^{t}\Vert {\mathcal {X}}^0(z_\varepsilon (s),s)-{\mathcal {X}}^0(z_0(s),s)\Vert ds\nonumber \\&\quad +\varepsilon \int _{t_0}^{t}\Vert {\mathcal {X}}^1(z_\varepsilon (s),s;\varepsilon )\Vert ds. \end{aligned}$$
(A.9)

Using (A.5) for the first term on the right-hand side, the Lipschitz condition on \({\mathcal {X}}^0\) for the second, and the boundedness of \({\mathcal {X}}^1\) for the third we obtain:

$$\begin{aligned} \Vert z_\varepsilon (t)-z_0(t)\Vert&\leqslant c\varepsilon +C_0\int _{t_0}^{t}\Vert z_\varepsilon (s)-z_0(s)\Vert ds\nonumber \\&\quad +\varepsilon C_1(t-t_0). \end{aligned}$$
(A.10)

Applying the Gronwall inequality for \(\delta _0=c\), \(\delta _1=\varepsilon C_1\), and \(\delta _2=C_0\), and recalling that \(K=c+\frac{C_1}{C_0}\) we obtain

$$\begin{aligned} \Vert z_\varepsilon (t)-z_0(t)\Vert&\leqslant \varepsilon \left( c+\frac{C_1}{C_0}\right) e^{C_0(t-t_0)}-\varepsilon \frac{C_1}{C_0}\nonumber \\&\leqslant \varepsilon K e^{C_0(t-t_0)}. \end{aligned}$$
(A.11)

If we let \(0\leqslant t-t_0\leqslant k\ln (1/\varepsilon )\) we obtain

$$\begin{aligned} \begin{aligned} \Vert z_\varepsilon (t)-z_0(t)\Vert&\leqslant \varepsilon \left( c+\frac{C_1}{C_0}\right) e^{C_0(t-t_0)}-\varepsilon \frac{C_1}{C_0}\\&\leqslant \varepsilon K e^{C_0k\ln (1/\varepsilon )}\\ {}&=\varepsilon K \left( \frac{1}{\varepsilon }\right) ^{C_0 k}. \end{aligned}\end{aligned}$$
(A.12)

Since \(k\leqslant \frac{1-\varrho }{C_0}\) we conclude

$$\begin{aligned} \begin{aligned} \Vert z_\varepsilon (t)-z_0(t)\Vert&\leqslant \varepsilon K \left( \frac{1}{\varepsilon }\right) ^{1-\varrho }=K\varepsilon ^{\varrho }. \end{aligned}\end{aligned}$$
(A.13)

\(\square \)

We note that, with the above argument, for a time of logarithmic order with respect to the size of the perturbation, we can only obtain an error of order \(O(\varepsilon ^{\varrho })\) with \(0<\rho <1\), but we cannot obtain an error of order \(O(\varepsilon )\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gidea, M., de la Llave, R. & Musser, M. Global Effect of Non-Conservative Perturbations on Homoclinic Orbits. Qual. Theory Dyn. Syst. 20, 9 (2021). https://doi.org/10.1007/s12346-020-00431-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00431-z

Keywords

Mathematics Subject Classification

Navigation