Skip to main content

Advertisement

Log in

Spatio-Geologically Informed Fuzzy Classification: An Innovative Method for Recognition of Mineralization-Related Patterns by Integration of Elemental, 3D Spatial, and Geological Information

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Recognition and mapping of mineralization-related patterns in geochemical data is a key computational analysis to achieve a predictive model of prospectivity for mineral deposit occurrence. This contribution describes a spatio-geologically informed fuzzy classification (SGIFC) for portraying the spatial-frequency distribution of mineralization through integration of geochemical concentrations, 3D spatial properties, and geological knowledge contained in surface samples. A spatio-geological interaction model (SGIM) was defined to constitute an SGIFC by modulating fuzzy memberships in each iteration of standard fuzzy c-means (FCM) according to the incorporation of both spatial and geological inter-sample similarities. This strategy was adapted to the compositional nature of multi-elemental data and implemented by programming over packages supplied within the R language environment. A comparative experiment on soil samples collected in a porphyry Cu–Au system was subjected to understand how the SGIM affects standard memberships spatially, statistically, and geostatistically. Spatial autocorrelation analysis of fuzzy memberships through Moran’s I calculation and Monte Carlo simulation indicated that SGIFC leads to more robust spatially connected patterns compared to FCM models. Moreover, variogram analysis illustrated that SGIM orients the spatial continuity of mineralization-related memberships along the diffusion bearing of hydrothermal fluids across geological structures of the study area. Rock samples collected along trenches, as well as Cu volumetric productivities, were used as benchmarks to evaluate the integrity of the derived predictive models. The results reveal that the distribution pattern of mineralization-related memberships for SGIFC, compared to that of FCM, is more consistent with sub-outcropping and deep metallogenic realities and describes a more significant quantitative association with subsurface mineral content within the study region. The incorporation of SGIM into fuzzy classification has demonstrated the sufficiency to synthesize the comprehensive information of samples to predict effectively potential targets for follow-up exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Abedi, M., Norouzi, G. H., & Torabi, S. A. (2013). Clustering of mineral prospectivity area as an unsupervised classification approach to explore copper deposit. Arabian Journal of Geosciences, 6(10), 3601–3613.

    Article  Google Scholar 

  • Adesiyan, A., Adekoya, A., Akinlua, A., & Torto, N. (2014). Statistical studies of soil geochemical data from Gbongan-Odeyinka area, Southwestern Nigeria. Geoinformatics & Geostatistics: An Overview, 2(1), 1–9.

    Google Scholar 

  • Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological), 44(2), 139–160.

    Google Scholar 

  • Aitchison, J. (1984). The statistical analysis of geochemical compositions. Journal of the International Association for Mathematical Geology, 16(6), 531–564.

    Article  Google Scholar 

  • Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93–115.

    Article  Google Scholar 

  • Asadi, H. (2008). First stage drilling report on Dalli porphyry CuAu prospect, Central Province of Iran. Technical Report.

  • Asadi, H. H., Porwal, A., Fatehi, M., Kianpouryan, S., & Lu, Y.-J. (2015). Exploration feature selection applied to hybrid data integration modeling: Targeting copper-gold potential in central Iran. Ore Geology Reviews, 71, 819–838.

    Article  Google Scholar 

  • Ayati, F., Yavuz, F., Asadi, H. H., Richards, J. P., & Jourdan, F. (2013). Petrology and geochemistry of calc-alkaline volcanic and subvolcanic rocks, Dalli porphyry copper–gold deposit, Markazi Province, Iran. International Geology Review, 55(2), 158–184.

    Article  Google Scholar 

  • Bailey, T. C., & Krzanowski, W. J. (2000). Extensions to spatial factor methods with an illustration in geochemistry. Mathematical Geology, 32(6), 657–682.

    Article  Google Scholar 

  • Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2), 191–203.

    Article  Google Scholar 

  • Bivand, R. S., Pebesma, E. J., Gómez-Rubio, V., & Pebesma, E. J. (2008). Applied spatial data analysis with R (Vol. 747248717). Berlin: Springer.

    Google Scholar 

  • Bivand, R. S., & Wong, D. W. S. (2018). Comparing implementations of global and local indicators of spatial association. Test, 27(3), 716–748.

    Article  Google Scholar 

  • Bonham-Carter, G. F., & Grunsky, E. C. (2018). Two ideas for analysis of multivariate geochemical survey data: Proximity regression and principal component residuals. In B. S. Daya-Sagar, Q. Cheng, & F. Agterberg (Eds.), Handbook of mathematical geosciences: Fifty years of IAMG (pp. 447–465). Berlin: Springer. https://doi.org/10.1007/978-3-319-78999-6_23.

    Chapter  Google Scholar 

  • Brandmeier, M., Zamora, I. G. C., Nykänen, V., & Middleton, M. (2020). Boosting for mineral prospectivity modeling: A new GIS toolbox. Natural Resources Research, 29(1), 71–88.

    Article  Google Scholar 

  • Brikin, M., & Clarke, G. P. (1991). Spatial interaction in geography. Geography Review, 4(5), 16–24.

    Google Scholar 

  • Brouwer, R. K., & Groenwold, A. (2010). Modified fuzzy c-means for ordinal valued attributes with particle swarm for optimization. Fuzzy Sets and Systems, 161(13), 1774–1789.

    Article  Google Scholar 

  • Buccianti, A., & Grunsky, E. (2014). Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes?. Amsterdam: Elsevier.

    Google Scholar 

  • Caciagli, N. (2015). Multielement geochemical modelling for mine planning: Case study from an epithermal gold deposit. In International workshop on compositional data analysis, pp. 45–61.

  • Cameron, E. M., & Hobbs, J. D. (1971). Computerized methods for interpreting reconnaissance geochemical surveys. Canadian Institute of Mining, Metallurgy and Petroleum Special, 11, 569.

    Google Scholar 

  • Campello, R. J. G. B., & Hruschka, E. R. (2006). A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets and Systems, 157(21), 2858–2875.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2001). Geologically constrained fuzzy mapping of gold mineralization potential, Baguio district, Philippines. Natural Resources Research, 10(2), 125–136.

    Article  Google Scholar 

  • Castillo-Muñoz, R., & Howarth, R. J. (1976). Application of the empirical discriminant function to regional geochemical data from the United Kingdom. Geological Society of America Bulletin, 87(11), 1567–1581.

    Article  Google Scholar 

  • Cebeci, Z. (2019). Comparison of internal validity indices for fuzzy clustering. Journal of Agricultural Informatics (ISSN 2061-862X), 10(2), 1–14.

    Google Scholar 

  • Chen, L., Guan, Q., Feng, B., Yue, H., Wang, J., & Zhang, F. (2019a). A multi-convolutional autoencoder approach to multivariate geochemical anomaly recognition. Minerals, 9(5), 270.

    Article  Google Scholar 

  • Chen, S., Plouffe, A., & Hattori, K. (2019b). A multivariate statistical approach identifying the areas underlain by potential porphyry-style Cu mineralization, south-central British Columbia, Canada. Journal of Geochemical Exploration, 202, 13–26.

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2017). Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data. Geochemistry: Exploration, Environment, Analysis, 17(3), 231–238.

    Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Bonham-Carter, G. F. (1996). A spatial analysis method for geochemical anomaly separation. Journal of Geochemical Exploration, 56(3), 183–195.

    Article  Google Scholar 

  • Cliff, A. D., & Ord, J. K. (1981). Spatial processes: models & applications. London: Taylor & Francis.

    Google Scholar 

  • Corsaro, R. A., Falsaperla, S., & Langer, H. (2013). Geochemical pattern classification of recent volcanic products from Mt. Etna, Italy, based on Kohonen maps and fuzzy clustering. International Journal of Earth Sciences, 102(4), 1151–1164.

    Article  Google Scholar 

  • Cox, D. P., & Singer, D. A. (1986). Mineral deposit models (Vol. 1693). Washington: US Government Printing Office Bulletin.

    Google Scholar 

  • Cuong, B. C., Lanzi, P. L., & Thong, N. T. (2012). A novel intuitionistic fuzzy clustering method for geo-demographic analysis. Expert Systems with Applications, 39(10), 9848–9859.

    Article  Google Scholar 

  • David, M. (2012). Geostatistical ore reserve estimation. Amsterdam: Elsevier.

    Google Scholar 

  • De Oliveira, J. V., & Pedrycz, W. (2007). Advances in fuzzy clustering and its applications. Hoboken: Wiley.

    Book  Google Scholar 

  • Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Cybernetics and Systems, 3(3), 32–57.

    Google Scholar 

  • Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barcelo-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3), 279–300.

    Article  Google Scholar 

  • Esmaeiloghli, S., & Tabatabaei, S. H. (2020). Comparative analysis of geochemical data processing methods for allocation of anomalies and background. Geochemistry International, 58(4), 472–485. https://doi.org/10.1134/S0016702920040084.

    Article  Google Scholar 

  • Esmaeiloghli, S., Tabatabaei, S. H., & Mokhtari, A. R. (2019). Optimizing the grade classification model of mineralized zones using a learning method based on harmony search algorithm. International Journal of Mining and Geo-Engineering, 53(2), 123–131.

    Google Scholar 

  • Fatehi, M., & Asadi, H. H. (2017a). Data integration modeling applied to drill hole planning through semi-supervised learning: A case study from the Dalli Cu–Au porphyry deposit in the central Iran. Journal of African Earth Sciences, 128, 147–160.

    Article  Google Scholar 

  • Fatehi, M., & Asadi, H. H. (2017b). Application of semi-supervised fuzzy c-means method in clustering multivariate geochemical data, a case study from the Dalli Cu–Au porphyry deposit in central Iran. Ore Geology Reviews, 81(Part 1), 245–255. https://doi.org/10.1016/j.oregeorev.2016.10.002.

    Article  Google Scholar 

  • Fatehi, M., Asadi, H. H., & Morshedy, A. H. (2020). 3D design of optimum complementary boreholes by integrated analysis of various exploratory data using a sequential-MADM approach. Natural Resources Research, 29, 1041–1061. https://doi.org/10.1007/s11053-019-09484-7.

    Article  Google Scholar 

  • Feng, Z., & Flowerdew, R. T. N. (1999). The use of fuzzy classification to improve geodemographic targeting. Innovations in GIS, 6, 133–144.

    Google Scholar 

  • Feng, Z., Flowerdew, R. T. N., & Carver, S. (1998). Fuzzy geodemographics: A contribution from fuzzy clustering methods. In S. Carver (ed) Innovations in GIS 5 (pp. 119–127). London: Taylor Francis.

    Google Scholar 

  • Ferraro, M. B., & Giordani, P. (2015). A toolbox for fuzzy clustering using the R programming language. In Fuzzy sets and systems (Vol. 279, pp. 1–16). Elsevier.

  • Ferraro, M. B., Giordani, P., & Serafini, A. (2019). fclust: An R package for fuzzy clustering. R Journal, 11(1), 198.

    Article  Google Scholar 

  • Filzmoser, P., Hron, K., Reimann, C., & Garrett, R. (2009). Robust factor analysis for compositional data. Computers & Geosciences, 35(9), 1854–1861.

    Article  Google Scholar 

  • Filzmoser, P., Hron, K., & Templ, M. (2018). Applied compositional data analysis. Cham: Springer Nature.

    Book  Google Scholar 

  • Ford, A. (2020). Practical implementation of random forest-based mineral potential mapping for porphyry Cu–Au mineralization in the Eastern Lachlan Orogen, NSW, Australia. Natural Resources Research, 29(1), 267–283.

    Article  Google Scholar 

  • Fouedjio, F. (2016). A hierarchical clustering method for multivariate geostatistical data. Spatial Statistics, 18, 333–351.

    Article  Google Scholar 

  • Geranian, H., Tabatabaei, S. H., Asadi, H. H., & Carranza, E. J. M. (2015). Multivariate regression analysis of lithogeochemical data to model subsurface mineralization: a case study from the Sari Gunay epithermal gold deposit, NW Iran. Journal of Geochemical Exploration, 148, 249–258.

    Article  Google Scholar 

  • Geranian, H., Tabatabaei, S. H., Asadi Haroni, H., & Carranza, J. M. (2016). Application of discriminant analysis and support vector machine in mapping gold potential areas for further drilling in the Sari-Gunay Gold Deposit, NW Iran. Natural Resources Research, 25(2), 145–159. https://doi.org/10.1007/s11053-015-9271-2.

    Article  Google Scholar 

  • Ghezelbash, R., Maghsoudi, A., & Carranza, E. J. M. (2019). Mapping of single-and multi-element geochemical indicators based on catchment basin analysis: Application of fractal method and unsupervised clustering models. Journal of Geochemical Exploration, 199, 90–104.

    Article  Google Scholar 

  • Ghezelbash, R., Maghsoudi, A., & Carranza, E. J. M. (2020). Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm. Computers & Geosciences, 134, 104335.

    Article  Google Scholar 

  • Glennie, K. W. (2000). Cretaceous tectonic evolution of Arabia’s eastern plate margin: A tale of two oceans. Middle East Models of Jurassic/Cretaceous Carbonate Systems. https://doi.org/10.2110/pec.00.69.0009.

    Article  Google Scholar 

  • Gonbadi, A. M., Tabatabaei, S. H., & Carranza, E. J. M. (2015). Supervised geochemical anomaly detection by pattern recognition. Journal of Geochemical Exploration, 157, 81–91.

    Article  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford: Oxford University Press on Demand.

    Google Scholar 

  • Govin, A., Holzwarth, U., Heslop, D., Ford Keeling, L., Zabel, M., Mulitza, S., et al. (2012). Distribution of major elements in Atlantic surface sediments (36 N–49 S): Imprint of terrigenous input and continental weathering. Geochemistry, Geophysics, Geosystems, 13(1), Q01013.

    Article  Google Scholar 

  • Granath, G. (1984). Application of fuzzy clustering and fuzzy classification to evaluate the provenance of glacial till. Journal of the International Association for Mathematical Geology, 16(3), 283–301.

    Article  Google Scholar 

  • Griffith, D. A. (2003). Spatial autocorrelation and spatial filtering: Gaining understanding through theory and scientific visualization. Berlin: Springer.

    Book  Google Scholar 

  • Grigorian, S. V. (1992). Mining geochemistry. Moscow: Nedra.

    Google Scholar 

  • Grünfeld, K. (2005). Visualization, integration and analysis of multi-element geochemical data. Stockholm: KTH.

    Google Scholar 

  • Hoang, H. A., Vu, T. D., & Nguyen, T. T. (2017). Spatial variability analysis of Cu content: A case study in Jiurui copper mining area. International Journal of Applied Geospatial Research (IJAGR), 8(1), 81–93.

    Article  Google Scholar 

  • Howarth, R. J. (1973). The pattern recognition problem in applied geochemistry. Institution of Mining and Metallurgy.

  • Iglesias, C., Antunes, I. M. H. R., Albuquerque, M. T. D., Martínez, J., & Taboada, J. (2020). Predicting ore content throughout a machine learning procedure–An Sn-W enrichment case study. Journal of Geochemical Exploration, 208, 106405.

    Article  Google Scholar 

  • Izakian, H., & Abraham, A. (2011). Fuzzy C-means and fuzzy swarm for fuzzy clustering problem. Expert Systems with Applications, 38(3), 1835–1838.

    Article  Google Scholar 

  • Ji, H., Zeng, D., Shi, Y., Wu, Y., & Wu, X. (2007). Semi-hierarchical correspondence cluster analysis and regional geochemical pattern recognition. Journal of Geochemical Exploration, 93(2), 109–119.

    Article  Google Scholar 

  • Juliani, C., & Ellefmo, S. L. (2019). Prospectivity mapping of mineral deposits in Northern Norway using radial basis function neural networks. Minerals, 9(2), 131.

    Article  Google Scholar 

  • Kamenikhin, N. T. (2010). Determining the erosion level of ore mineralization using correlation analysis and ordered series techniques. Geochemistry International, 48(2), 163–177.

    Article  Google Scholar 

  • Köhler, C. M., Heslop, D., Dekkers, M. J., Krijgsman, W., van Hinsbergen, D. J. J., & von Dobeneck, T. (2008). Tracking provenance change during the late Miocene in the eastern Mediterranean using geochemical and environmental magnetic parameters. Geochemistry, Geophysics, Geosystems, 9(12), Q12018.

    Article  Google Scholar 

  • Kramar, U. (1995). Application of limited fuzzy clusters to anomaly recognition in complex geological environments. Journal of Geochemical Exploration, 55(1–3), 81–92.

    Article  Google Scholar 

  • Legendre, P. (1993). Spatial autocorrelation: Trouble or new paradigm? Ecology, 74(6), 1659–1673.

    Article  Google Scholar 

  • Li, S., Chen, J., & Xiang, J. (2019). Applications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big data. Neural Computing and Applications, 32, 2037–2053. https://doi.org/10.1007/s00521-019-04341-3.

    Article  Google Scholar 

  • Li, T., Xia, Q., Zhao, M., Gui, Z., & Leng, S. (2020). Prospectivity mapping for tungsten polymetallic mineral resources, Nanling metallogenic belt, south China: Use of random forest algorithm from a perspective of data imbalance. Natural Resources Research, 29(1), 203–227.

    Article  Google Scholar 

  • Lin, N., Chen, Y., & Lu, L. (2020). Mineral potential mapping using a conjugate gradient logistic regression model. Natural Resources Research, 29(1), 173–188.

    Article  Google Scholar 

  • Liu, Y., Carranza, E. J. M., Zhou, K., & Xia, Q. (2019). Compositional balance analysis: An elegant method of geochemical pattern recognition and anomaly mapping for mineral exploration. Natural Resources Research, 28, 1269–1283. https://doi.org/10.1007/s11053-019-09467-8.

    Article  Google Scholar 

  • Liu, Y., Zhou, K., & Carranza, E. J. M. (2018). Compositional balance analysis for geochemical pattern recognition and anomaly mapping in the western Junggar region, China. Geochemistry: Exploration, Environment, Analysis, 18(3), 263–276.

    Google Scholar 

  • Lowell, J. D., & Guilbert, J. M. (1970). Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Economic Geology, 65(4), 373–408.

    Article  Google Scholar 

  • Luo, J. (1990). Statistical mineral prediction without defining a training area. Mathematical Geology, 22(3), 253–260.

    Article  Google Scholar 

  • Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2019). cluster: Cluster analysis basics and extensions. R package version 2.1.0.

  • Maimon, O., & Rokach, L. (2005). Data mining and knowledge discovery handbook. Berlin: Springer.

    Book  Google Scholar 

  • Majewska, J., & Truskolaski, S. (2019). Cluster-mapping procedure for tourism regions based on geostatistics and fuzzy clustering: Example of Polish districts. Current Issues in Tourism, 22(19), 2365–2385.

    Article  Google Scholar 

  • Mao, X., Ren, J., Liu, Z., Chen, J., Tang, L., Deng, H., et al. (2019). Three-dimensional prospectivity modeling of the Jiaojia-type gold deposit, Jiaodong Peninsula, Eastern China: A case study of the Dayingezhuang deposit. Journal of Geochemical Exploration, 203, 27–44.

    Article  Google Scholar 

  • Mao, X., Zhang, W., Liu, Z., Ren, J., Bayless, R. C., & Deng, H. (2020). 3D Mineral Prospectivity Modeling for the Low-Sulfidation Epithermal Gold Deposit: A Case Study of the Axi Gold Deposit, Western Tianshan. NW China. Minerals, 10(3), 233.

    Google Scholar 

  • Martín-Fernández, J. A., Barceló-Vidal, C., Pawlowsky-Glahn, V., Buccianti, A., Nardi, G., & Potenza, R. (1998). Measures of difference for compositional data and hierarchical clustering methods. Proceedings of IAMG, 98(1), 526–531.

    Google Scholar 

  • Mason, G. A., & Jacobson, R. D. (2007). Fuzzy geographically weighted clustering. In Proceeding of the 9th international conference on geocomputation. No. 1998, pp. 1–7.

  • Matheron, G. (1962). Traité de géostatistique appliquée. 1 (1962) (Vol. 1). Editions Technip.

  • Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266.

    Article  Google Scholar 

  • Matheron, G. (1965). Les variables régionalisées et leur estimation: une application de la théorie des fonctions aléatoires aux sciences de la nature. Masson et CIE.

  • Medjadba, Y., Hu, D., Liu, W., & Yu, X. (2019). Combining graph clustering and quantitative association rules for knowledge discovery in geochemical data problem. IEEE Access, 8, 40453–40473.

    Article  Google Scholar 

  • Meshkani, S. A., Mehrabi, B., Yaghubpur, A., & Alghalandis, Y. F. (2011). The application of geochemical pattern recognition to regional prospecting: A case study of the Sanandaj-Sirjan metallogenic zone, Iran. Journal of Geochemical Exploration, 108(3), 183–195.

    Article  Google Scholar 

  • Monteiro, L. V. S., Xavier, R. P., de Carvalho, E. R., Hitzman, M. W., Johnson, C. A., de Souza Filho, C. R., et al. (2008). Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide–copper–gold deposit, Carajás Mineral Province, Brazil: Paragenesis and stable isotope constraints. Mineralium Deposita, 43(2), 129–159.

    Article  Google Scholar 

  • Nguyen, T. T. (2018). Use of Moran’s I and robust statistics to separate geochemical anomalies in Jiurui area (Southeast China). Maden Tetkik ve Arama Dergisi, 156(156), 179–192.

    Google Scholar 

  • Nguyen, T. T. (2020). Analysis of spatial dependence of ore-forming elements using geostatistics and Moran correlogram. Asian Review of Environmental and Earth Sciences, 7(1), 47–54.

    Article  Google Scholar 

  • Nguyen, T. T., Vu, D. T., & Nguyen, T. L. H. (2016). Spatial cluster and outlier identification of geochemical association of elements: A case study in Juirui copper mining area. Maden Tetkik ve Arama Dergisi, 153(153), 159–167.

    Google Scholar 

  • Nielsen, A. A., Conradsen, K., Pedersen, J. L., & Steenfelt, A. (1997). Spatial factor analysis of stream sediment geochemistry data from South Greenland. In Proceedings of the third annual conference of the International Association for Mathematical Geology Barcelona, Spain, pp. 955–960.

  • Pamungkas, I. H., & Pramana, S. (2016). spatialClust: Spatial clustering using fuzzy geographically weighted clustering. R package version 1.1.1. https://CRAN.R-project.org/package=spatialClust.

  • Paz-Ferreiro, J., Vázquez, E. V., & Vieira, S. R. (2010). Geostatistical analysis of a geochemical dataset. Bragantia, 69, 121–129.

    Article  Google Scholar 

  • Prado, E. M. G., de Souza Filho, C. R., Carranza, E. J. M., & Motta, J. G. (2020). Modeling of Cu–Au prospectivity in the Carajás mineral province (Brazil) through Machine Learning: Dealing with Imbalanced Training Data. Ore Geology Reviews, 124, 1–20. https://doi.org/10.1016/j.oregeorev.2020.103611.

    Article  Google Scholar 

  • Rantitsch, G. (2000). Application of fuzzy clusters to quantify lithological background concentrations in stream-sediment geochemistry. Journal of Geochemical Exploration, 71(1), 73–82.

    Article  Google Scholar 

  • Reimann, C., Filzmoser, P., Garrett, R., & Dutter, R. (2011). Statistical data analysis explained: Applied environmental statistics with R. Hoboken: Wiley.

    Google Scholar 

  • Sepúlveda, E., Dowd, P. A., & Xu, C. (2018). Fuzzy clustering with spatial correction and its application to geometallurgical domaining. Mathematical Geosciences, 50(8), 895–928.

    Article  Google Scholar 

  • Shafiei, B., Haschke, M., & Shahabpour, J. (2009). Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44(3), 265.

    Article  Google Scholar 

  • Solovov, A. P. (1985). Chemical prospectivity for mineral deposits. Amazon.

  • Son, L. H. (2014). Enhancing clustering quality of geo-demographic analysis using context fuzzy clustering type-2 and particle swarm optimization. Applied Soft Computing, 22, 566–584. https://doi.org/10.1016/j.asoc.2014.04.025.

    Article  Google Scholar 

  • Son, L. H. (2015). A novel kernel fuzzy clustering algorithm for geo-demographic analysis. Information Sciences—Informatics and Computer Science, Intelligent Systems, Applications An International Journal, 317(C), 202–223.

    Google Scholar 

  • Son, L. H., Cuong, B. C., Lanzi, P. L., & Hung, H. A. (2012). Data mining in GIS: A novel context-based fuzzy geographically weighted clustering algorithm. International Journal of Machine Learning and Computing, 2(3), 235–238.

    Article  Google Scholar 

  • Son, L. H., Cuong, B. C., & Long, H. V. (2013). Spatial interaction—Modification model and applications to geo-demographic analysis. Knowledge-Based Systems, 49, 152–170. https://doi.org/10.1016/j.knosys.2013.05.005.

    Article  Google Scholar 

  • Sun, X., Deng, J., Gong, Q., Wang, Q., Yang, L., & Zhao, Z. (2009). Kohonen neural network and factor analysis based approach to geochemical data pattern recognition. Journal of Geochemical Exploration, 103(1), 6–16.

    Article  Google Scholar 

  • Sun, T., Li, H., Wu, K., Chen, F., Zhu, Z., & Hu, Z. (2020). Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from Southern Jiangxi Province, China. Minerals, 10(2), 102.

    Article  Google Scholar 

  • Talebi, H., Peeters, L. J. M., Mueller, U., Tolosana-Delgado, R., & van den Boogaart, K. G. (2020). Towards geostatistical learning for the geosciences: A case study in improving the spatial awareness of spectral clustering. Mathematical Geosciences, 52, 1035–1048. https://doi.org/10.1007/s11004-020-09867-0.

    Article  Google Scholar 

  • Team, R. C. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Vienna, Austria.

  • Templ, M., Filzmoser, P., & Reimann, C. (2008). Cluster analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 23(8), 2198–2213.

    Article  Google Scholar 

  • Thompson, M., & Howarth, R. J. (1976). Duplicate analysis in geochemical practice. Part I. Theoretical approach and estimation of analytical reproducibility. Analyst, 101(1206), 690–698.

    Article  Google Scholar 

  • Tian, M., Wang, X., Nie, L., & Zhang, C. (2018). Recognition of geochemical anomalies based on geographically weighted regression: A case study across the boundary areas of China and Mongolia. Journal of Geochemical Exploration, 190, 381–389.

    Article  Google Scholar 

  • Torppa, J., Nykänen, V., & Molnár, F. (2019). Unsupervised clustering and empirical fuzzy memberships for mineral prospectivity modelling. Ore Geology Reviews, 107, 58–71.

    Article  Google Scholar 

  • Vriend, S. P., van Gaans, P. F. M., Middelburg, J., & de Nijs, A. (1988). The application of fuzzy c-means cluster analysis and non-linear mapping to geochemical datasets: Examples from Portugal. Applied Geochemistry, 3(2), 213–224.

    Article  Google Scholar 

  • Wackernagel, H. (2013). Multivariate geostatistics: An introduction with applications. Berlin: Springer.

    Google Scholar 

  • Wang, H., Cheng, Q., & Zuo, R. (2015). Spatial characteristics of geochemical patterns related to Fe mineralization in the southwestern Fujian province (China). Journal of Geochemical Exploration, 148, 259–269.

    Article  Google Scholar 

  • Wang, Z., Dong, Y., & Zuo, R. (2019a). Mapping geochemical anomalies related to Fe–polymetallic mineralization using the maximum margin metric learning method. Ore Geology Reviews, 107, 258–265.

    Article  Google Scholar 

  • Wang, W., & Zhang, Y. (2007). On fuzzy cluster validity indices. Fuzzy Sets and Systems, 158(19), 2095–2117.

    Article  Google Scholar 

  • Wang, J., Zhou, Y., & Xiao, F. (2020a). Identification of multi-element geochemical anomalies using unsupervised machine learning algorithms: A case study from Ag–Pb–Zn deposits in north-western Zhejiang, China. Applied Geochemistry. https://doi.org/10.1016/j.apgeochem.2020.104679.

    Article  Google Scholar 

  • Wang, J., & Zuo, R. (2020). Quantifying the distribution characteristics of geochemical elements and identifying their associations in Southwestern Fujian Province, China. Minerals, 10(2), 183.

    Article  Google Scholar 

  • Wang, J., Zuo, R., & Caers, J. (2017). Discovering geochemical patterns by factor-based cluster analysis. Journal of Geochemical Exploration, 181, 106–115.

    Article  Google Scholar 

  • Wang, Z., Zuo, R., & Dong, Y. (2019). Mapping geochemical anomalies through integrating random forest and metric learning methods. Natural Resources Research, 28, 1285–1298. https://doi.org/10.1007/s11053-019-09471-y.

    Article  Google Scholar 

  • Wang, J., Zuo, R., & Xiong, Y. (2020b). Mapping mineral prospectivity via semi-supervised random forest. Natural Resources Research, 29(1), 189–202. https://doi.org/10.1007/s11053-019-09510-8.

    Article  Google Scholar 

  • Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. Hoboken: Wiley.

    Book  Google Scholar 

  • Wijayanto, A. W., Purwarianti, A., & Son, L. H. (2016). Fuzzy geographically weighted clustering using artificial bee colony: An efficient geo-demographic analysis algorithm and applications to the analysis of crime behavior in population. Applied Intelligence, 44(2), 377–398.

    Article  Google Scholar 

  • Winkler, R., Klawonn, F., & Kruse, R. (2011). Fuzzy c-means in high dimensional spaces. International Journal of Fuzzy System Applications (IJFSA), 1(1), 1–16.

    Article  Google Scholar 

  • Xiang, J., Xiao, K., Carranza, E. J. M., Chen, J., & Li, S. (2020). 3D mineral prospectivity mapping with random forests: A case study of Tongling, Anhui, China. Natural Resources Research, 29(1), 395–414. https://doi.org/10.1007/s11053-019-09578-2.

    Article  Google Scholar 

  • Xiong, Y., & Zuo, R. (2016). Recognition of geochemical anomalies using a deep autoencoder network. Computers & Geosciences, 86, 75–82.

    Article  Google Scholar 

  • Xu, N., Peng, M., Li, Q., & Xu, C. (2020). Towards consistent interpretations of coal geochemistry data on whole-coal versus ash bases through machine learning. Minerals, 10(4), 328.

    Article  Google Scholar 

  • Yoshida, K., Kuwatani, T., Yasumoto, A., Haraguchi, S., Ueki, K., & Iwamori, H. (2018). GEOFCM: A new method for statistical classification of geochemical data using spatial contextual information. Journal of Mineralogical and Petrological Sciences, 113(3), 159–169. https://doi.org/10.2465/jmps.171127.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015). Prediction–area (P–A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69–81. https://doi.org/10.1016/J.CAGEO.2015.03.007.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25(1), 3–18.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2017). Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. Journal of African Earth Sciences, 128, 47–60. https://doi.org/10.1016/j.jafrearsci.2016.04.019.

    Article  Google Scholar 

  • Yousefi, M., Kreuzer, O. P., Nykänen, V., & Hronsky, J. M. A. (2019). Exploration information systems—A proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews, 111, 103005.

    Article  Google Scholar 

  • Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. Journal of Geochemical Exploration, 164, 94–106.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Article  Google Scholar 

  • Zhang, D., Cheng, Q., & Agterberg, F. (2017). Application of spatially weighted technology for mapping intermediate and felsic igneous rocks in Fujian Province, China. Journal of Geochemical Exploration, 178, 55–66.

    Article  Google Scholar 

  • Zhang, D., Ren, N., & Hou, X. (2018). An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1. 0) and its application to mineral prospectivity mapping. Geoscientific Model Development, 11(6), 2525.

    Article  Google Scholar 

  • Zhang, S., Xiao, K., Carranza, E. J. M., & Yang, F. (2019a). Maximum entropy and random forest modeling of mineral potential: Analysis of gold prospectivity in the Hezuo-Meiwu district, west Qinling Orogen, China. Natural Resources Research, 28(3), 645–664.

    Article  Google Scholar 

  • Zhang, S., Xiao, K., Carranza, E. J. M., Yang, F., & Zhao, Z. (2019b). Integration of auto-encoder network with density-based spatial clustering for geochemical anomaly detection for mineral exploration. Computers & Geosciences, 130, 43–56. https://doi.org/10.1016/j.cageo.2019.05.011.

    Article  Google Scholar 

  • Zhou, S., Zhou, K., Wang, J., Yang, G., & Wang, S. (2018). Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies. Frontiers of Earth Science, 12(3), 491–505.

    Article  Google Scholar 

  • Zuo, R. (2017). Machine learning of mineralization-related geochemical anomalies: A review of potential methods. Natural Resources Research, 26(4), 457–464.

    Article  Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral prospectivity. Computers & Geosciences, 37(12), 1967–1975.

    Article  Google Scholar 

  • Zuo, R., Carranza, E. J. M., & Wang, J. (2016). Spatial analysis and visualization of exploration geochemical data. Earth-Science Reviews, 158, 9–18.

    Article  Google Scholar 

  • Zuo, R., & Xiong, Y. (2018). Big data analytics of identifying geochemical anomalies supported by machine learning methods. Natural Resources Research, 27(1), 5–13.

    Article  Google Scholar 

  • Zuo, R., Xiong, Y., Wang, J., & Carranza, E. J. M. (2019). Deep learning and its application in geochemical mapping. Earth Science Reviews, 192, 1–14. https://doi.org/10.1016/j.earscirev.2019.02.023.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Dorsa Pardazeh Mining Company for providing exploration data and other information used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hassan Tabatabaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeiloghli, S., Tabatabaei, S.H. & Carranza, E.J.M. Spatio-Geologically Informed Fuzzy Classification: An Innovative Method for Recognition of Mineralization-Related Patterns by Integration of Elemental, 3D Spatial, and Geological Information. Nat Resour Res 30, 989–1010 (2021). https://doi.org/10.1007/s11053-020-09798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09798-x

Keywords

Navigation