Skip to main content
Log in

A compressed string matching algorithm for face recognition with partial occlusion

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

There has been less attention towards the research on face recognition with partial occlusion. Facial accessories such as masks, sunglasses, and caps, etc., cause partial occlusion which results in a significant performance drop of the face recognition system. In this paper, a novel compressed string matching algorithm based on run-length encoding (CSM-RL) is proposed to solve the partial occlusion problem. In this, the face image is represented by a string sequence that is then compressed using run-length encoding. The proposed CSM-RL algorithm performs string matching between query face and gallery face string sequences by computing the edit distance between string sequences, finally, classifies query face based on the minimum edit distance. The proposed method does not require a classifier and has less time complexity, thus it is more suitable for real-world face recognition applications. The proposed method performs better than the state-of-the-art methods even limited sample images per person are available in the gallery. Extensive experimental results on benchmark face datasets such as AR and Extended Yale-B prove that the proposed algorithm exhibits significant performance improvement both in terms of speed and recognition accuracy for the recognition of partially occluded faces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ekenel, H.K., Stiefelhagen, R.: Why is facial occlusion a challenging problem. In: Proceedings IAPR 3rd International Conference Biometrics (ICB), pp. 299–308 (2009)

  2. Min, R., Hadid, A., Dugelay, J.L.: Improving the recognition of faces occluded by facial accessories. In: Proceedings IEEE International Conference Automatic Face Gesture Recognition (FG), pp. 442–447 (2011)

  3. Jia, H., Martinez, A.M.: Face recognition with occlusions in the training and testing sets. In: Proceedings IEEE International Conference Automatic Face Gesture Recognition (FG), pp. 1–6 (2008)

  4. Lin, D., Tang, X.: Quality-driven face occlusion detection and recovery. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–7 (2007)

  5. Storer, M., Urschler, M., Bischof, H.: Occlusion detection for ICAO compliant facial photographs. In: Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 122–129 (2010)

  6. Kirby, M., Sirovich, L.: Application of the Karhunen-Loève procedure for the characterization of the human face. IEEE Trans. Pattern Anal. Mach. Intell. (1990). https://doi.org/10.1109/34.41390

    Article  Google Scholar 

  7. Turk, M. A., Pentland, A. P., Face recognition using eigenfaces. In: Proceedings of the IEEE Conference on CVPR, pp. 586–591 (1991)

  8. Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recogn. 34, 2067–2070 (2001)

    Article  Google Scholar 

  9. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fishy faces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  10. Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by independent component analysis. IEEE Trans. Neural Netw. 13, 1450–1464 (2002)

    Article  Google Scholar 

  11. Nefian, A.V., Hayes, M.H.: Hidden Markov models for face recognition. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 5, 2721–2724 (1998)

    Google Scholar 

  12. Tan, X., Chen, S., Zhou, Z.H., et al.: Recognizing partially occluded, expression variant faces from a single training image per person with SOM and soft k-NN ensemble. IEEE Trans. Neural Netw. 16(4), 875–886 (2005)

    Article  Google Scholar 

  13. Kanan, H.R., Faez, K., Gao, Y.: Face recognition using adaptively weighted patch pzm array from a single exemplar image per person. Pattern Recognit. 41(12), 3799–3812 (2008)

    Article  Google Scholar 

  14. Tan, X., Chen, S., Zhou, Z.H., Liu, J.: Face recognition under occlusions and variant expressions with partial similarity. IEEE Trans. Inform. Forensics Secur. 4(2), 217–230 (2009)

    Article  Google Scholar 

  15. Jia, H., Martinez, A.M.: Support vector machines in face recognition with occlusions. In: Proceedings of the IEEE 10th Scientific World Journal Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR 09), pp. 136–141(2009)

  16. Weng, R., Lu, J., Hu, J., Yang, G., Tan, Y.P.: Robust feature set matching for partial face recognition. In: Proceedings of IEEE International Conference Computer Vision (ICCV), pp. 601–608 (2013)

  17. Wei, X., Li, C.T., Lei, Z., et al.: Dynamic image-to-class warping for occluded face recognition. IEEE Trans. Inf. Forensics Secur. 9(12), 2035–2050 (2014)

    Article  Google Scholar 

  18. Weng, R., Lu, J., Tan, Y.P.: Robust point set matching for partial face recognition. IEEE Trans. Image Process. 25(3), 1163–1176 (2016)

    Article  MathSciNet  Google Scholar 

  19. Wright, J., Yang, A.Y., Ganesh, A.: Robust face recognition via sparse Representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  20. Zhou, Z., Wagner, A., Mobahi, H., et al.: Face recognition with contiguous occlusion using Markov random fields. IEEE International Conference Computer Vision (ICCV), pp. 1050–1057 (2009)

  21. Liao, S., Jain, A.K.: Partial face recognition: an alignment-free approach. In: Proceedings of the International Joint Conference on Biometrics (IJCB 11) (2011)

  22. Zhang, D., Yang, M., Feng, X.: Sparse representation or collaborative representation: Which helps face recognition? In: Proceedings of IEEE International Conference Computer Vision (ICCV), pp. 471–478 (2011)

  23. Jia, K., Chan, T.H., Ma, Y.: Robust and practical face recognition via structured sparsity. Proc. Eur. Conf. Comput. Vis. (ECCV) 7575, 331–344 (2012)

    Google Scholar 

  24. He, R., Zheng, W.S., Tan, T., Sun, Z.: Half-quadratic-based iterative minimization for robust sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 261–275 (2014)

    Article  Google Scholar 

  25. Yang, M., Zhang, L., Feng, X., et al.: Sparse representation based Fisher discrimination dictionary learning for image classification. Int. J. Comput. Vis. 109(3), 209–232 (2014)

    Article  MathSciNet  Google Scholar 

  26. Vu, T.H., Monga, V.: Fast low-rank shared dictionary learning for image classification. IEEE Trans. Image Process. 26(11), 5160–5175 (2017)

    Article  MathSciNet  Google Scholar 

  27. Su, Y., Zhe, L., Mengyao, W.: Sparse representation-based face recognition against expression and illumination. IET Image Proc. 12(5), 826–832 (2018)

    Article  Google Scholar 

  28. Fritz, K., Damiana, L., Serena, M.: A robust group sparse representation variational method with applications to face recognition. IEEE Trans. Image Process. 28(6), 2785–2798 (2019)

    Article  MathSciNet  Google Scholar 

  29. Chen, W., Gao, Y.: Face recognition using ensemble string matching. IEEE Trans. Image Process. 22(12), 4798–4808 (2013)

    Article  MathSciNet  Google Scholar 

  30. Chen, W., Gao, Y.: Recognizing partially occluded faces from a single sample per class using string-based matching. Proc. Eur. Conf. Comput. Vis. 3, 496–509 (2010)

    Google Scholar 

  31. Gao, Y., Leung, M.K.H.: Human face profile recognition using attributed string. Pattern Recogn. 35(2), 353–360 (2002)

    Article  Google Scholar 

  32. Mario, F.: Face recognition using approximate string matching. Program Studi Teknik Informatika, Sekolah Teknik Electro dan Informatika ITB, Corpus (2014)

  33. Naseem, A.I., Togneri, B.R., Bennamoun, C.M.: Linear regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2106–2112 (2010)

    Article  Google Scholar 

  34. Yang, M., Zhang, L., Yang, J., Zhang, D.: Regularized robust coding for face recognition. IEEE Trans. Image Process. 22(5), 1753–1766 (2013)

    Article  MathSciNet  Google Scholar 

  35. Zhang, L.: Matlab Code for RRC_L1, http://www4.comp.polyu.edu.hk/ (2013). Accessed Dec 2014

  36. Meng, Y., Lei, Z., Jian, Y., et al.: Robust sparse coding for face recognition. In: Proceedings IEEE International Conference Computer Vision Pattern Recognition, pp. 625–632 (2011)

  37. Xie, J., Yang, J., Qian, J.J., Tai, Y., Zhang, H.M.: Robust nuclear norm-based matrix regression with applications to robust face recognition. IEEE Trans. Image Process. 26(5), 2286–2295 (2017)

    Article  MathSciNet  Google Scholar 

  38. Liadis, M., Wang, H., Molina, R., Katsaggelos, A.K.: Robust and low-rank representation for fast face identification with occlusions. IEEE Trans. Image Process. 26(5), 2203–2218 (2017)

    Article  MathSciNet  Google Scholar 

  39. Liadis, M., Wang, H., Molina, R., et al.: https://github.com/miliadis/FIRC2017. Accessed 5 Jan 2018

  40. Yueqi, D., Lu, J., Feng, J., Zhou, J.: Topology preserving structural matching for automatic partial face recognition. IEEE Trans. Inf. Forensics Secur. 13(7), 1823–1837 (2018)

    Article  Google Scholar 

  41. Bingrong, X., Qingshan, L., Tingwen, H.: A discrete-time projection neural network for sparse signal reconstruction with application to face recognition. IEEE Trans. Neural Netw. Learn. Syst. 30(1), 151–162 (2019)

    Article  MathSciNet  Google Scholar 

  42. Mehdipour, M., Ghazi, K., Ekenel, H.: A comprehensive analysis of deep learning based representation for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 34–41(2016)

  43. Lu, J., Wang, G., Zhou, J.: Simultaneous feature and dictionary learning for image set based face recognition. IEEE Trans. Image Process. 26, 4042–4054 (2017)

    Article  MathSciNet  Google Scholar 

  44. Hu, G., Peng, X., Yang, Y., et al.: Learning deep face representations using small data. IEEE Trans. Image Process. 27, 293–303 (2018)

    Article  MathSciNet  Google Scholar 

  45. Rawat, W., Wang, A., Deep, Z.: Convolutional neural networks for image classification. A comprehensive review. Neural Comput. 29, 2352–2449 (2017)

    Article  MathSciNet  Google Scholar 

  46. Grm, K., Struc, V., Artiges, A., et al.: Strengths and weaknesses of deep learning models for face recognition against image degradations. IET Biom. 7(1), 81–89 (2017)

    Article  Google Scholar 

  47. Zhou, E., Cao, Z., Yin, Q.: Naive-Deep face recognition: touching the limit of LFW benchmark or not? (2015). arXiv:1501.04690

  48. Zhang, L., Liu, J., Zhang, B., et al.: Deep cascade model-based face recognition: When deep-layered learning meets small data. IEEE Trans. Image Process. 29, 1016–1029 (2020)

    Article  MathSciNet  Google Scholar 

  49. Martinez, A.M., Benavente, R.: The AR face database. Tech. Rep. 24, 5 (1998)

    Google Scholar 

  50. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

    Article  Google Scholar 

  51. Lee, K., Ho, J., Kriegman, D.: Acquiring Linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)

    Article  Google Scholar 

  52. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: Proceedings of IEEE Conference Computer Vision Pattern Recognition (CVPR), pp. 1–8 (2008)

  53. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnaveni Bommidi.

Additional information

Communicated by Y. Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bommidi, K., Sundaramurthy, S. A compressed string matching algorithm for face recognition with partial occlusion. Multimedia Systems 27, 191–203 (2021). https://doi.org/10.1007/s00530-020-00727-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-020-00727-9

Keywords

Navigation