Skip to main content
Log in

Moore-type nonoscillation criteria for half-linear difference equations

  • Original Research
  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

This paper deals with the half-liner difference equation

$$\begin{aligned} \varDelta (r_n\phi _p(\varDelta x_n))+c_n\phi _p(x_{n+1})=0, \end{aligned}$$

where \(r_n\), \(c_n\) are real-valued sequences, \(r_n>0\) for \(n \in \mathbb {N} \cup \{0\}\), and \(\phi _p(z)=|z|^{p-2}z\) with \(p>1\) and \(\mathbb {N}\) is the set of natural numbers. The purpose of this paper is to use the function transformation and Riccati technology to establish a half-linear difference equations nonoscillation theorem. Our results generalize earlier nonoscillation result of Došlý and Řehák (Comput Math Appl 42:453–464, 2001). Furthermore, in the case of \(p=2\), we can present two examples to determine that the solution of the linear difference equation are nonoscillatory even if

$$\begin{aligned} \sum ^{n-1}r_{j}^{-1}\sum _{j=n}^{\infty }c_{j} \quad \text {or} \quad \sum _{j=n}^{\infty }r_{j}^{-1}\sum ^{n-1}c_{j} \end{aligned}$$

is less than the lower bound \(-3/4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agarwal, R. P.: Difference Equations and Inequalities: Theory, Methods, and Applications, 2nd ed., Monographs and Textbooks in Pure and Applied Mathematics, vol. 228. Marcel Dekker, New York, (2000)

  2. Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation Theory for Second Order Linear. Superlinear and Sublinear Dynamic Equations. Kluwer Academic Publishers, Dordrecht (2002)

    Book  Google Scholar 

  3. Došlý, O.: Methods of oscillation theory of half-linear second order differential equations. Czechoslovak Math. J. 50(125), 657–671 (2000)

    Article  MathSciNet  Google Scholar 

  4. Došlý, O.: Oscillation theory of linear difference equations. Arch. Math. (Brno) 36, 329–342 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Došlý, O., Řehák, P.: Nonoscillation criteria for half-linear second-order difference equations. Comput. Math. Appl. 42, 453–464 (2001)

    Article  MathSciNet  Google Scholar 

  6. Došlý, O., vRehák, P.: Half-linear Differential Equations. North-Holland Mathematics Studies, vol. 202. Elsevier, Amsterdam, (2005)

  7. Došlý, O., Fišnarová, S.: Linearized Riccati technique and (non-)oscillation criteria for half-linear difference equations. Adv. Differ. Equ. 1, 1–8 (2008)

    Article  MathSciNet  Google Scholar 

  8. Hartman, P.: Ordinary Differential Equations, Corrected reprint of the second (1982) edition, With a foreword by Peter Bates, Classics in Applied Mathematics 38 (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2002)

  9. Hasil, P., Veselý, M.: Oscillation and non-oscillation criteria for linear and half-linear difference equations. J. Math. Anal. Appl. 452, 401–428 (2017)

    Article  MathSciNet  Google Scholar 

  10. Hille, E.: Non-oscillation theorems. Trans. Am. Math. Soc. 64, 234–252 (1948)

    Article  MathSciNet  Google Scholar 

  11. Moore, R.A.: The behavior of solutions of a linear differential equation of second order. Pac. J. Math. 5, 125–145 (1955)

    Article  MathSciNet  Google Scholar 

  12. Řehák, P.: Hartman-Wintner type lemma, oscillation, and conjugacy criteria for half-linear difference equations. J. Math. Anal. Appl. 252, 813–827 (2000)

    Article  MathSciNet  Google Scholar 

  13. Řehák, P.: Oscillation and nonoscillation criteria for second order linear difference equations. Fasc. Math. No. 31, 71–89 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Řehák, P.: Generalized discrete Riccati equation and oscillation of half-linear difference equations. Math. Comput. Model. 34, 257–269 (2001)

    Article  MathSciNet  Google Scholar 

  15. Swanson, C .A.: Comparison and Oscillation Theory of Linear Differential Equations. Mathematics in Science and Engineering, vol. 48. Academic Press, New York (1968)

    Google Scholar 

  16. Wintner, A.: On the non-existence of conjugate points. Am. J. Math. 73, 368–380 (1951)

    Article  MathSciNet  Google Scholar 

  17. Wray, S.D.: Integral comparison theorems in oscillation theory. J. Lond. Math. Soc. 8, 595–606 (1974)

    Article  MathSciNet  Google Scholar 

  18. Wu, F., Sugie, J.: A new application method for nonoscillation criteria of Hille-Wintner type. Monatsh Math. 183, 201–218 (2017)

    Article  MathSciNet  Google Scholar 

  19. Zhang, G., Cheng, S.S.: A necessary and sufficient oscillation condition for the discrete Euler equation. PanAm. Math. J. 9, 29–34 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author’s work was supported in part by research fund, No.11671072 from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Ishibashi.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., She, L. & Ishibashi, K. Moore-type nonoscillation criteria for half-linear difference equations. Monatsh Math 194, 377–393 (2021). https://doi.org/10.1007/s00605-020-01508-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-020-01508-2

Keywords

Mathematics Subject Classification

Navigation