Skip to main content
Log in

Subgroups of pro-p \(PD ^3\)-groups

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We study 3-dimensional Poincaré duality pro-p groups in the spirit of the work by Robert Bieri and Jonathan Hillmann, and show that if such a pro-p group G has a nontrivial finitely presented subnormal subgroup of infinite index, then either the subgroup is cyclic and normal or the subgroup is cyclic and the group is polycyclic or the subgroup is Demushkin and normal in an open subgroup of G. Also, we describe the centralizers of finitely generated subgroups of 3-dimensional Poincaré duality pro-p groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bieri, R.: Homological dimension of discrete groups. Queen Mary College Mathematics Notes (1976)

  2. Bieri, R., Hillman, J.A.: Subnormal subgroups of 3-dimensional Poincaré duality groups. Math. Z. 206(1), 67–69 (1991)

    Article  MathSciNet  Google Scholar 

  3. Camina, A.R., Camina, R.D.: Pro-p groups of finite width. Commun. Algebra 29, 1583–1593 (2001)

    Article  MathSciNet  Google Scholar 

  4. Grunewald, F., Jaikin-Zapirain, A., Pinto, A.G., Zalesskii, P.A.: Normal subgroups of profinite groups of non-negative deficiency. J. Pure Appl. Algebra 218(5), 804–828 (2014)

    Article  MathSciNet  Google Scholar 

  5. Herfort, W., Zalesskii, P.A.: Virtually free pro-\(p\) groups. Publications math. de l’IHÉS. 118, 193–211 (2013)

  6. Hillman, J.A.: Centralizers and normalizers of subgroups of \(\text{ PD}^3\)-groups and open \(\text{ PD}^3\)-groups. J. Pure Appl. Algebra 204(2), 244–257 (2006)

    Article  MathSciNet  Google Scholar 

  7. Hillman, J.A.: Some questions on subgroups of 3-dimensional Poincaré duality groups. (2016). arXiv preprint arXiv:1608.01407

  8. Hillman, J.A., Schmidt, A.: Pro-\(p\) groups of positive deficiency. Bull. Lond. Math. Soc. 40, 1065–1069 (2008)

    Article  MathSciNet  Google Scholar 

  9. Kaplansky, I.: An Introduction to Differential Algebra. Hermann, Paris (1957)

    MATH  Google Scholar 

  10. Kropholler, P.H., Roller, M.A.: Splittings of Poincaré duality groups III. J. Lond. Math. Soc. 2(2), 271–284 (1989)

    Article  Google Scholar 

  11. Ribes, L., Zalesskii, P.A.: Profinite Groups. Springer, Berlin (2000)

    Book  Google Scholar 

  12. Segal, D.: Polycyclic Groups. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  13. Serre, J.-P.: Sur la dimension cohomologique des groupes profinis. Topology 3, 413–420 (1965)

    Article  MathSciNet  Google Scholar 

  14. Symonds, P., Weigel, Th.: Cohomology of \(p\)-adic analytic groups. New horizons in pro-\(p\) groups, Birkhäuser, Boston, pp. 349–410 (2000)

  15. Weigel, Th, Zalesskii, P.A.: Profinite groups of finite cohomological dimension. C.R. Math. 338(5), 353–35 (2004)

    Article  MathSciNet  Google Scholar 

  16. Wilton, H., Zalesskii, P.: Pro-\(p\) subgroups of profinite completions of 3-manifold groups. J. Lond. Math. Soc. 96(2), 293–308 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Castellano.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author is partially supported by FAPDF and CNPq. The paper was started when the second author was visiting the University of Milano-Biccoca and he thanks the Department of Mathematics of it for hospitality.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellano, I., Zalesskii, P. Subgroups of pro-p \(PD ^3\)-groups. Monatsh Math 195, 391–400 (2021). https://doi.org/10.1007/s00605-020-01505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-020-01505-5

Keywords

Mathematics Subject Classification

Navigation