Skip to main content
Log in

Extraction and Separation of Sinapine from Rapeseed Cake and the Mode of Action of Melanin Production Inhibition

  • METHODS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

Brassica campestris L. is the important oil-bearing crop in China. Rapeseed cake is the main byproduct of rapeseed oil extraction. As the main active ingredient in rapeseed cake, sinapine has several important biological activities. Therefore, the inhibitory activity of sinapine on tyrosinase in vitro and its free radical-scavenging rate were determined. Tyrosinase activity in A-375 human melanocytes was also investigated and the effects of sinapine on the melanin content and its antioxidant effects on melanin biosynthesis were studied. The results showed that sinapine had significant antioxidant activity. Sinapine significantly inhibited A-375 human melanocytes in a dose-dependent manner. Sinapine inhibited melanin synthesis in A-375 cells by downregulating the mRNA and protein expression of TRP-1, TRP-2, and MITF factors. The results showed that rapeseed cake sinapine inhibited melanin production and could be used as a potential active ingredient in the development of whitening agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Schallreuter K.U., Kothari S., Chavan B., Spencer J.D. 2008. Regulation of melanogenesis: Controversies and new concepts. J. Exp. Dermatol. 17, 395–404.

    Article  CAS  Google Scholar 

  2. Chou Y.C., Sheu J.R., Chung C.L., Chen C.Y., Lin F.L., Hu M.J., Kuo Y.H., Hsiao G. 2010. Nuclear-targeted inhibition of NF-κB on MMP-9 production by N-2-(4-bromophenyl) ethyl caffeamide in human monocytic cells. J. Chem. Biol. Interact. 184, 403–412.

    Article  CAS  Google Scholar 

  3. Li W.J., Lin Y.C., Wu P.F., Wen Z.H., Liu P.L., Chen C.Y., Wang H.M. 2013. Biofunctional constituents from Liriodendron tulipifera with antioxidants and anti-melanogenic properties. Int. J. Mol. Sci. 14, 1698.

    Article  CAS  Google Scholar 

  4. Kai H., Baba M., Okuyama T. 2008. Inhibitory effect of Cucumis sativus on melanin production in melanoma B16 cells by downregulation of tyrosinase expression. J. Med. Plants Stud. 74, 1785–1788.

    CAS  Google Scholar 

  5. Cooksey C.J., Garratt P.J., Land E.J., Pavel S., Ramsden C.A., Riley P.A., Smit N.P. 1997. Evidence of the indirect formation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase. J. Biol. Chem. 272, 26226–26235.

    Article  CAS  Google Scholar 

  6. Sandoval-Cruz M., García-Carrasco M., Sánchez-Porras R., Mendoza-Pinto C., Jiménez-Hernández M., Munguía-Realpozo P., Ruiz-Argüelles A. 2011. Immunopathogenesis of vitiligo. J. Autoimmun Rev. 10 (12), 762–765.

    Article  CAS  Google Scholar 

  7. Tsukamoto K., Jackson I.J., Urabe K., Montague P.M., Hearing V.J. 1992. A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO. J. 11, 519–526.

    Article  CAS  Google Scholar 

  8. Kim D.S., Hwang E.S., Lee J.E., Kim S.Y., Kwon S.B., Park K.C. 2003. Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation. J. Cell Sci. 116, 1699.

    Article  CAS  Google Scholar 

  9. Kim Y., Lee J. 2017. Effects of hydrolyzed rapeseed cake extract on the quality characteristics of mayonnaise dressing. J. Food Sci. 82, 2847–2856.

    Article  CAS  Google Scholar 

  10. Kozlowska H., Naczk M., Shahidi F., Zadernowski R. 1990. Phenolic acids and tannins in rapeseed and canola. J. Canola Rapeseed. 1990, 193–210.

    Article  Google Scholar 

  11. de Lima-Saraiva S.R.G., Oliveira F.G.D.S., Junior R.G.O., Araújo C.S., de Oliveira A.P., Pacheco A.G.M., Rolim L.A., Amorim E.L.C., César F.C.S., Almei-da J.R.G.D.S. 2017. Chemical analysis and evaluation of antioxidant, antimicrobial, and photoprotective activities of Schinopsis brasiliensis Engl. Anacardiaceae). Sci. World J. 2017, 1713921. https://doi.org/10.1155/2017/1713921

  12. Zhang L., Gu J., Chen Y., Zhang L. 2013. A study on four antioxidation effects of Lycium Barbarum polysaccharides in vitro. Afr. J. Tradit. Complement. Altern. Med. 10, 494–498.

    Article  Google Scholar 

  13. Li H.J., Li J.X., Zhang Z. 2016. Response surface optimization of ultrasonic-assisted extraction of melanin from testae of wild apric. J. Food Sci. 37, 26–33.

    Google Scholar 

  14. Sarah L., Molyneux S.L., Carolyn E. 2009. An investigation of the antioxidant properties and color of glasshouse grown tomatoes. Int. J. Food Sci. Nutr. 55, 537–545.

    Google Scholar 

  15. Zhang Z.P. 2014. Extraction and separation skin-whitening agent from rhizoma Chuanxiong and its application in cosmetics. Guangdong Yao Xue Yuan. 2014, 1–67.

    Google Scholar 

  16. Niu C., Yin L., Aisa H.A. 2018. Novel furocoumarin derivatives stimulate melanogenesis in B16 melanoma cells by up-regulation of MITF and TYR family via Akt/GSK3β/β-catenin signaling pathways. Int. J. Mol. Sci. 19, 746.

    Article  Google Scholar 

  17. Li L.L., Xing R., Deng Y.Y., Xie L.F., Wang L. 2016. Research progress of tyrosinase inhibitors. Shi Ping Gong Ye. 37, 235–239.

    CAS  Google Scholar 

  18. Bao J.L., Ding R.B., Zou L.D., Zhang C., Wang K., Liu F., Li P., Chen M.W., Wan J.B., Su H.X., Wang Y.T., He C.W. 2015. Forsythiae fructus inhibits B16 melanoma growth involving MAPKs/Nrf2/HO-1 mediated anti-oxidation and anti-inflammation. Am. J. Chinese Med. 44, 112.

    Google Scholar 

  19. Dudonné S., Vitrac X., Coutière P., Woillez M., Merillon J.M. 2009. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of undustrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agr. Food Chem. 57, 1768–1774.

    Article  Google Scholar 

  20. Sies H. 1997. Oxidative stress: oxidants and antioxidants. Exp. Physiol. 82, 291–295. https://doi.org/10.1113/expphysiol.1997.sp004024

    Article  CAS  PubMed  Google Scholar 

  21. Peiyuan L.I., Huo L.N., Su W., Lu R.M., Deng C.C., Liu L.Q., Deng Y.K., Guo N.N., Lu C.S., He C.L. 2011. Free radical-scavenging capacity, antioxidant activity and phenolic content of Pouzolzia zeylanica. J. Serb. Chem. Soc. 76, 709–717.

    Article  Google Scholar 

  22. Zhao Q., Yu S.J., Wang Y.P., Yuan Y.J. 2012. Optimization of the extracting process for alkaloids from Dicranostigma leptopodum by response surface analysis and study on its antibacterial activity in vitro. Cao Ye Xue Bao. 21, 206–214.

    Google Scholar 

  23. Broznić D., Jurešić G.Č., Milin Č. 2016. Involvement of α-, γ- and δ-tocopherol isomers from pumpkin (Cucurbita pepo L.) seed oil or oil mixtures in the biphasic DPPH. J. Food Technol. Biotech. 54, 200–210.

    Google Scholar 

  24. Bae J.S., Han M., Yao C., Chung J.H. 2016. Chaetocin inhibits IBMX-induced melanogenesis in B16F10 mouse melanoma cells through activation of ERK. J. Chem-Biol. Interact. 245, 66–71.

    Article  CAS  Google Scholar 

  25. Nakajima M., Shinoda I., Fukuwatari Y., Hayasawa H. 1998. Arbutin increases the pigmentation of cultured human melanocytes through mechanisms other than the induction of tyrosinase activity. J. Pigm. Cell Melanoma Res. 11, 12–17.

    CAS  Google Scholar 

  26. Lin J.W., Chiang H.M., Lin Y.C., Wen K.C. 2008. Natural products with skin-whitening effects. J. Food Drug Anal. 16, 1–10.

    Google Scholar 

  27. Pillaiyar T., Manickam M., Jung S.H. 2015. Inhibitors of melanogenesis: a patent review (2009–2014). J. Expert Opin. Ther. Pat. 25, 775.

    Article  CAS  Google Scholar 

  28. Park H.Y., Kosmadaki M., Yaar M., Gilchrest A. 2009. Cellular mechanisms regulating human melanogenesis. J. Cell Mol. Life Sci. 66, 1493–1506.

    Article  CAS  Google Scholar 

  29. Zhi Q.Z., Jian J.X., Li M.Z. 2015. Antioxidant activity of three components of wheat leaves: Ferulic acid, flavonoids and ascorbic acid. J. Food Sci. Tech. 2015, 7297–7304.

    Google Scholar 

  30. Lin L.C., Chen C.Y., Kuo C.H., Lin Y.S., Hwang B.H., Wang T.K., Kuo Y.H., Wang H.M. 2018. 36H: A novel potent inhibitor for antimelanogenesis. J. Oxid. Med. Cell Longev. 2018, 1–12.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Part of this work was conducted in the Research Center for High Altitude Medicine, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province.

Funding

This work was supported by Qinghai Province Major Science and Technology Special Programs Grant no. 2017-SF-A8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Zhang.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors have no conflicts of interest to declare.

ADDITIONAL INFORMATION

The text was submitted by the author(s) in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z.T., Lu, D.X., Hong, EK. et al. Extraction and Separation of Sinapine from Rapeseed Cake and the Mode of Action of Melanin Production Inhibition. Mol Biol 54, 911–918 (2020). https://doi.org/10.1134/S002689332005012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689332005012X

Keywords:

Navigation