Skip to main content
Log in

Sensitivity Modeling and Enhancement for Space-Based Gravitational Wave Detector with Optical Atomic Clocks under Solar Radiation Disturbance

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The space-based gravitational wave detectors at low frequencies has received great attention recently. Due to lack of considering the relative motion between spacecrafts, the accuracy of current sensitivity models is inadequate for space-based gravitational wave detectors. In this paper, an accurate sensitivity model of the space-based gravitational wave detector is established by taking into account the relative motion between two spacecrafts. The accurate sensitivity model is derived by employing a gravitational wave perturbed metric tensor. Then, to minimize the sensitivity loss due to the solar radiation, an enhancement strategy is proposed. Finally, simulation studies are presented with two drag-free spacecrafts in Earth’s orbit. Simulation results validate the effectiveness of the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016)

    Article  MathSciNet  Google Scholar 

  • Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., et al.: GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119(14), 141101 (2017)

    Article  Google Scholar 

  • Amaro-Seoane, P., Aoudia, S., Babak, S., Binétruy, P., Berti, E., et al.: eLISA: Astrophysics and cosmology in the millihertz regime. arXiv preprint arXiv. 1201.3621 (2012)

  • Amaro-Seoane, P., Aoudia, S., Babak, S., Binétruy, P., Berti, E., et al.: eLISA: Astrophysics and cosmology in the millihertz regime. Journal of Neuroscience Research. 67(3), 337–345 (2012)

  • Brewer, S.M., Chen, J.S., Hankin, A.M., Clements, E.R., Chou, C.W., et al.: Al+ 27 quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett. 123(3), 033201 (2019)

    Article  Google Scholar 

  • Cui, K., Liu, H., Jiang, W., Yu, D.: Effects of Thrust Noise and Measurement Noise on Drag-Free and Attitude Control System. Microgravity Sci. Technol. 32(2), 189–202 (2019)

  • Fichter, W., Schleicher, A., Bennani, S., Wu, S.: Wu, Closed loop performance and limitations of the LISA Pathfinder drag-free control system. AIAA 2007-6732, AIAA Guidance Navigation and Control Conference, 20–23 August 2007, Hilton Head, South Carolina

  • Hu, X.C., Li, X.H., Wang, Y., Feng, W.F., Zhou, M.Y., et al.: Fundamentals of the orbit and response for TianQin. Classical. Quantum Gravity. 35(9), 095008 (2018)

    Article  Google Scholar 

  • Kaufmann, W.J.: Redshift fluctuations arising from gravitational waves. Nature. 227(5254), 157–158 (1970)

    Article  Google Scholar 

  • Kolkowitz, S., Pikovski, I., Langellier, N., Lukin, M.D., Walsworth, R.L., et al.: Gravitational wave detection with optical lattice atomic clocks. Physical Review D. 94(12), 124043 (2016)

    Article  Google Scholar 

  • Larson, S.L., Hiscock, W.A., Hellings, R.W.: Sensitivity curves for spaceborne gravitational wave interferometers. Physical Review D. 62(6), 062001 (2000)

    Article  Google Scholar 

  • Larson, S.L., Hellings, R.W., Hiscock, W.A.: Unequal arm space-borne gravitational wave detectors. Physical Review D. 66(6), 062001 (2002)

    Article  Google Scholar 

  • Li, Y., Wang, C., Wang, L., Liu, H., Jin G.: A Laser Interferometer Prototype with Pico-Meter Measurement Precision for Taiji Space Gravitational Wave Detection Mission in China. Microgravity Sci. Technol. 32(3), 331–338 (2020)

  • Liang, D., Gong, Y., Weinstein, A.J., Zhang, C., Zhang, C.: Frequency response of space-based interferometric gravitational-wave detectors. Physical Review D. 99(10), 104027 (2019)

    Article  MathSciNet  Google Scholar 

  • Liu, H., Luo, Z., Jin, G.: The development of phasemeter for Taiji space gravitational wave detection. Microgravity Sci. Technol. 30(6), 775–781 (2018)

    Article  Google Scholar 

  • Lu, X.Y., Tan, Y.J., Shao, C.G.: Sensitivity functions for space-borne gravitational wave detectors. Physical Review D. 100(4), 044042 (2019)

    Article  Google Scholar 

  • Luo, J., Chen, L.S., Duan, H.Z., Gong, Y.G., Hu, S.C., et al.: TianQin: a space-borne gravitational wave detector. Classical. Quantum Gravity. 33(3), 035010 (2016)

    Article  Google Scholar 

  • Nelson, R.A.: Relativistic time transfer in the vicinity of the earth and in the solar system. Metrologia. 48(4), S171 (2011)

    Article  Google Scholar 

  • Oelker, E., Hutson, R.B., Kennedy, C. J., Sonderhouse, L., Bothwell, T., et al.: Demonstration of 4.8×10-17 stability at 1 s for two independent optical clocks. Nature Photonics. 13(10), 714–719 (2019)

  • Petit, G., Wolf, P.: Relativistic theory for time comparisons: a review. Metrologia. 42(3), S138 (2005)

    Article  Google Scholar 

  • Piran, T., Reiter, E., Unruh, W.G., Vessot, R.F.C.: Filtering of spacecraft Doppler tracking data and detection of gravitational radiation. Physical Review D. 34(4), 984 (1986)

    Article  Google Scholar 

  • Qin, C.G., Shao, C.G.: General post-Minkowskian expansion and application of the phase function. Physical Review D. 96(2), 024003 (2017)

    Article  MathSciNet  Google Scholar 

  • Schrijver, C.J., Beer, J., Baltensperger, U., Cliver E.W., Güdel, M., et al.: Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. Journal of Geophysical Research: Space Physics. 117, (A08103) (2012)

  • Stroeer, A., Vecchio, A.: The LISA verification binaries. Classical. Quantum Gravity. 23(19), S809 (2006)

    Article  Google Scholar 

  • Su, J., Wang, Q., Wang, Q., Wang, Q., Jetzer, P.: Low-frequency gravitational wave detection via double optical clocks in space. Classical. Quantum Gravity. 35(8), 085010 (2018)

    Article  Google Scholar 

  • Turyshev, S.G., Yu, N., Toth, V.T.: General relativistic observables for the ACES experiment. Physical Review D. 93(4), 045027 (2016)

    Article  MathSciNet  Google Scholar 

  • Vutha, A.: Optical frequency standards for gravitational wave detection using spacecraft Doppler velocimetry. New J. Phys. 17(6), 063030 (2015)

    Article  Google Scholar 

  • Wu, F.F., Tang, Y.B., Shi, T.Y., Tang, L.Y.: Magic-intensity trapping of the mg lattice clock with light shift suppressed below 10−19. Phys. Rev. A. 101(5), 053414 (2020)

    Article  Google Scholar 

  • Zeng, G., Wu, X.L., Gong, B., Li, D.L., Wang, C.: Analysis of influence of solar radiation pressure on ground track keeping controlling zero yaw attitude mode. Chin. Space Sci. Technol. 39(3), 23–29 (in Chinese) (2019)

    Google Scholar 

  • Zhang, C., He, J., Duan, L., Kang, Q.: Design of an Active Disturbance Rejection Control for drag-free satellite. Microgravity Sci. Technol. 31(1), 31–48 (2019)

    Article  Google Scholar 

  • Zhou, J., Liu, L., Wang, Z.: Modeling and analysis of ultra-low frequency dynamics of drag-free satellites. Microgravity Sci. Technol. 31(2), 151–160 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51675430 and 11402044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Ethics declarations

Conflict of Interest

No competing financial interests exist.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Liu, L. & Tang, S. Sensitivity Modeling and Enhancement for Space-Based Gravitational Wave Detector with Optical Atomic Clocks under Solar Radiation Disturbance. Microgravity Sci. Technol. 33, 1 (2021). https://doi.org/10.1007/s12217-020-09852-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-020-09852-6

Keywords

Navigation