Skip to main content

Advertisement

Log in

Synoptic pattern of the Red Sea trough associated with spring dust over the northern and western Arabian Peninsula

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

From 1979 to 2006, the Red Sea trough (RST) in spring was objectively detected and classified into three categories (short, moderate and long) depending on its northward extension. The results indicated that most short RSTs appeared during a cold spring (larger by 7% in March than May), while most long RSTs appeared during a warm spring, where reached 71.7% in April and May. The dust events during the study period were identified using a threshold value of the Total Ozone Monitoring Satellite (TOMS) aerosol index (AI). The identified dust cases were used to classify each RST category into two classes, dust RSTs and non-dust RSTs. The synoptic characteristics of the RSTs associated with dust events that influenced the northern and western Arabian Peninsula (AP) were studied using each dust category (i.e., comparing dust and non-dust cases) and were compared between the different categories (i.e., comparing the dust cases among short, moderate and long categories). The synoptic study shows that the condition favorable for transporting dust westward into the AP occurs when an interaction is produced between the low pressure over the southern AP and Sudan low and forms a wavy zonal pressure gradient. When the RST is relatively strong, i.e., the situation has a pronounced wavy zonal and meridional pressure gradient area, it produces conditions favorable for transporting dust around the Red Sea. Commonly, dust RSTs are atmospherically integrated systems with pronounced circulation (downward motion in the eastern AP and upward motion in the western AP), a vertical westward trough tilt, horizontal tropical–extratropical interactions and north–south orientations of pressure/geopotential isolines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ackerman SA (1989) Using the radiative temperature difference at 3.7 and 11 mm to track dust outbreaks. Remote Sens Environ 27:129–133

    Article  Google Scholar 

  • Alharbi BH, Maghrabi A, Tapper N (2013) The March 2009 dust event in Saudi Arabia: precursor and supportive environment. Bull Am Meteorol Soc 94:515–528

    Article  Google Scholar 

  • Almazroui M, Awad AM (2016) Synoptic regimes associated with the eastern Mediterranean wet season cyclone tracks. Atmos Res 180: 92–118. https://doi.org/10.1016/j.atmosres.2016.05.015

    Article  Google Scholar 

  • Almazroui M, Awad AM, Islam NM, Al-Khalaf AK (2015) A climatological study: wet season cyclone tracks in the East Mediterranean region. Theor Appl Climatol 120: 351–365. https://doi.org/10.1007/s00704-014-1178-z

    Article  Google Scholar 

  • Alpert P, Osetinsky I, Ziv B, Shafir H (2004a) Semi-objective classification for daily synoptic systems: application to the eastern Mediterranean climate change. Int J Climatol 24(8):1001–1011. https://doi.org/10.1002/joc.1036

    Article  Google Scholar 

  • Alpert P, Osetinsky I, Ziv B, Shafir H (2004b) A new seasons definition based on classified daily synoptic systems: an example for the Eastern Mediterranean. Int J Climatol 24(8):1013–1021. https://doi.org/10.1002/joc.1037

    Article  Google Scholar 

  • Annesi-Maesano I, Forastiere F, Kunzli N, Brunekref B (2007) Particulate matter, science and EU policy. Eur Respir J 29:428–431. https://doi.org/10.1183/09031936.00129506

    Article  Google Scholar 

  • Attada R, Dasari HP, Chowdary JS, Yadav RK, Knio O, Hoteit I (2019) Surface air temperature variability over the Arabian Peninsula and its links to circulation patterns. Int J Climatol 39:445–462. https://doi.org/10.1002/joc.5821

    Article  Google Scholar 

  • Awad AM, Almazroui M (2016) Climatology of the winter Red Sea. Atmos Res 182:20–29. https://doi.org/10.1016/j.atmosres.2016.07.019

    Article  Google Scholar 

  • Awad AM, Mashat AS (2014a) Synoptic features associated with dust transition processes from North Africa to Asia. Arab J Geosci 7(6):2451–2467. https://doi.org/10.1007/s12517-013-0923-4

    Article  Google Scholar 

  • Awad A, Mashat A (2014b) The synoptic patterns associated with spring widespread dusty days in Central and Eastern Saudi Arabia. Atmosphere 5(4):889–913

    Article  Google Scholar 

  • Awad AM, Mashat AS (2015) Synoptic characteristics of spring dust days over northern Saudi Arabia. Air Qual Atmos Health. https://doi.org/10.1007/s11869-015-0320-0

    Article  Google Scholar 

  • Awad AM, Mashat AWS (2018) Climatology of the autumn Red Sea trough. Theor Appl Climatol. https://doi.org/10.1007/s00704-018-2453-1

    Article  Google Scholar 

  • Awad AM, Mashat AS, Alamoudi AO, Assiri ME (2015a) Synoptic study of the seasonal variability of dust cases observed by the TOMS satellite over northern Saudi Arabia. Theor Appl Climatol. https://doi.org/10.1007/s00704-015-1486-y

    Article  Google Scholar 

  • Awad AM, Mashat AS, Abo Salem FFA (2015b) Diagnostic study of spring dusty days over the southwest region of the Kingdom of Saudi Arabia. Arab J Geosci 8:2265–2282

    Article  Google Scholar 

  • Babu CA, Jayakrishnan PR, Varikoden H (2016) Characteristics of precipitation pattern in the Arabian Peninsula and its variability associated with ENSO. Arab J Geosci 9:186. https://doi.org/10.1007/s12517-015-2265-x

    Article  Google Scholar 

  • Baseer NM, Awad AM, Almazroui M (2019) Climatology of the spring Red Sea Trough. Int J Climatol. https://doi.org/10.1002/joc.6069

    Article  Google Scholar 

  • Beegum SN, Gherboudj I, Chaouch N, Temimi M, Ghedira H (2018) Simulation and analysis of synoptic scale dust storms over the Arabian peninsula. Atmos Res 199:62–81

    Article  Google Scholar 

  • Bitan A, Saaroni H (1992) The horizontal and vertical extension of the Persian Gulf pressure trough. Int J Climatol 12(7):733–747. https://doi.org/10.1002/joc.3370120706

    Article  Google Scholar 

  • Blake DW, Krishnamurti TN, Low-Nam SV, Fein JS (1983) Heat low over the Saudi Arabian Desert during May 1979 (Summer MONEX). Mon Weather Rev 111:1759–1775

    Article  Google Scholar 

  • Crosbie E, Sorooshian A, Monfared NA, Shingler T, Esmaili OA (2014) Multi-year aerosol characterization for the greater Tehran Area using satellite, surface, and modeling data. Atmosphere 5:178–197

    Article  Google Scholar 

  • Dayan U, Ziv B, Shoop T, Enzel Y (2008) Suspended dust over south-eastern Mediterranean and its relation to atmospheric circulations. Int J Climatol 28(7):915e924. https://doi.org/10.1002/joc.1587

    Article  Google Scholar 

  • De Vries AJ, Tyrlis E, Edry D, Krichak SO, Steil B, Lelieveld J (2013) Extreme precipitation events in the Middle East: dynamics of the active Red Sea Trough. J Geophys Res Atmos 118:7087–7108. https://doi.org/10.1002/jgrd.50569

    Article  Google Scholar 

  • El-Fandy MG (1948) The effect of Sudan monsoon low on the development of thundery conditions in Egypt, Palestine and Syria. Quarter J Royal Meteorol Soc 74:31–38

    Article  Google Scholar 

  • El-Fandy MG (1950) Effects of topography and other factors on the movement of lows in the Middle East and Sudan. Bull American Meteorol Soc 10:375–381

    Article  Google Scholar 

  • El Kenawy AM, McCabe MF (2016) A multi-decadal assessment of the performance of gauge- and model-based rainfall products over Saudi Arabia: climatology, anomalies and trends. Int J Climatol 36:656. https://doi.org/10.1002/joc.4374-674

    Article  Google Scholar 

  • El Kenawy AM, McCabe MF, Stenchikov G, Raj J (2014) Multi-decadal classification of synoptic weather types, observed trends and links to rainfall characteristics over Saudi Arabia. Front Environ Sci Eng 2:37

    Google Scholar 

  • Ganor E, Osetinksy I, Stupp A, Pinhas A (2010) Increasing trend of African dust, over 49 years, in the eastern Mediterranean. J Geophys Res Atmos. https://doi.org/10.1029/2009JD012500

    Article  Google Scholar 

  • Gates WL (1961) Static stability in the atmosphere. J Meteorol 18:526–533

    Article  Google Scholar 

  • Gherboudj I, Naseema Beegum S, Ghedira H (2017) Identifying natural dust source regions over the Middle-East and North-Africa: estimation of dust emission potential. Earth Sci Rev 165:342–355. https://doi.org/10.1016/j.earscirev.2016.12.010

    Article  Google Scholar 

  • Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56:179–204. https://doi.org/10.1016/S0012-8252(01)00067-8

    Article  Google Scholar 

  • Goudie A, Middleton N (2006) Desert dust in the global system. Springer, Heidelberg

    Google Scholar 

  • Haggag M, El-Badry H (2013) Mesoscale numerical study of quasi-stationary convective system over Jeddah in November 2009. Atmos Clim Sci 3(1):73–86. https://doi.org/10.4236/acs.2013.31010

    Article  Google Scholar 

  • Hamidi M, Kavianpour MR, Shao Y (2013) Synoptic analysis of dust storms in the Middle East. Asia Pac J Atmos Sci 49:279–286

    Article  Google Scholar 

  • Hannachi A, Awad A, Ammar K (2011) Climatology and classification of Spring Saharan cyclone tracks. Clim Dyn 37:473–491. https://doi.org/10.1007/s00382-010-0941-9

    Article  Google Scholar 

  • Hasanean HM, Almazroui M (2016) Teleconnections of the tropical sea surface temperatures to the surface air temperature over Saudi Arabia in summer season. Int J Climatol 37:1040–1049. https://doi.org/10.1002/joc.4758

    Article  Google Scholar 

  • Herman JR, Bhartia PK, Torres O, Hsu C, Seftor C, Celarier E (1997) Global distribution of UV-absorbing aerosols from Nimbus-7/TOMS data. J Geophys Res 102:16911–16922

    Article  Google Scholar 

  • Hsu NC, Herman JR, Torres O, Holben BN, Tanre D, Eck TF, Smirnov A, Chatenet B, Lavenu F (1999) Comparisons of the TOMS aerosol index with sun-photometer aerosol optical thickness: results and applications. J Geophys Res 104:6269–6279

    Article  Google Scholar 

  • Huneeus N, Schulz M, Balkanski Y, Griesfeller J, Prospero J, Kinne S, Bauer S, Boucher O, Chin M, Dentener F, Diehl T, Easter R, Fillmore D, Ghan S, Ginoux P, Grini A (2011) Global dust model intercomparison in Aerocom Phase I. Atmos Chem Phys 11:7781–7816

    Article  Google Scholar 

  • Joseph JH, Manes A, Ashbel D (1973) Desert aerosols transported by Khamsinic depressions and their climatic effects. J Appl 12:792–797

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iridell M Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropolewski C, Wang J, Leetma A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kaufman YJ, Koren I, Remer A, Rosenfeld D, Rudich Y (2005) The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc Natl Acad Sci USA 102:11207–11212. https://doi.org/10.1073/pnas.0505191102

    Article  Google Scholar 

  • Kistler R, Collins W, Saha S, White G, Woollen J, Kalnay E, Chelliah M, Ebisuzaki W, Kanamitsu M, Kouskyvanden Dool VH, Jenne R, Fiorino M (2001) The NCEP/NCAR 50-year reanalyses: monthly CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267

    Article  Google Scholar 

  • Krichak SO, Alpert P (1998) Role of large scale moist dynamics in November 1–5, 1994 hazardous Mediterranean weather. J Geophys Res 103:19453–19458

    Article  Google Scholar 

  • Krichak SO, Alpert P, Krishnamurti TN (1997b) Red Sea Trough/cyclone development—numerical investigation. Meteorol Atmos Phys 63:159–169

    Article  Google Scholar 

  • Krichak SO, Tsidulko M, Alpert P (2000) Monthly synoptic patterns associated with wet/dry conditions in the eastern Mediterranean. Theoret Appl Climatol 65:215–229

    Article  Google Scholar 

  • Krichak SO, Breitgand JS, Feldstein SB (2012) A Conceptual Model for the Identification of Active Red Sea Trough Synoptic Events over the Southeastern Mediterranean. J. Appl. Meteor. Climatol. 51:962–971. https://doi.org/10.1175/JAMC-D-11-0223.1

    Article  Google Scholar 

  • Laurent B, Marticorena B, Bergametti G, Le’on JF, Mahowald NM (2008) Modeling mineral dust emissions from the Sahara desert using new surface properties and soil database. J Geophys Res 113:D14218. https://doi.org/10.1029/2007JD009484

    Article  Google Scholar 

  • Mahowald NM, Luo C, del Corral J, Zender C (2003) Interannual variability in atmospheric mineral aerosols from a 22-year model simulation and observation data. J Geophys Res. https://doi.org/10.1029/2002JD002821

    Article  Google Scholar 

  • Mashat A, Awad AM (2010) The classification of the dusty areas over the middle-east. Bull Fac Sci Cairo Univ 78:1–19

    Google Scholar 

  • Mashat AW, Awad A (2016) Synoptic characteristics of the primary widespread winter dust patterns over the northern Arabian Peninsula. Air Qual Atmos Health 9(5):503–516

    Article  Google Scholar 

  • Mashat AWS, Alamoudi AO, Awad AM, Assiri ME (2018) Seasonal variability and synoptic characteristics of dust cases over southwestern Saudi Arabia. Int J Climatol 38:105–124. https://doi.org/10.1002/joc.5164

    Article  Google Scholar 

  • Middleton NJ (1986a) Dust storms in the Middle East. J Arid Environ 10:83–96

    Article  Google Scholar 

  • Middleton NJ (1986b) A geography of dust storms in south-west Asia. J Climatol 6:183–196

    Article  Google Scholar 

  • Mohalfi S, Bedi HS, Krishnamurti TN, Cocke SD (1998) Impact of shortwave radiative effects of dust aerosols on the summer season heat low over Saudi Arabia. Mon Weather Rev 126:3153–3168

    Article  Google Scholar 

  • Natsagdory L, Jugder D, Chung YS (2003) Analysis of dust storms observed in Mongolia during 1937–1999. Atmos Environ 37:1401–1411

    Article  Google Scholar 

  • Notaro M, Alkolibi F, Fadda E, Bakhrjy F (2013) Trajectory analysis of Saudi Arabian dust storms. J Geophys Res Atmos 118:6028–6043

    Article  Google Scholar 

  • Osetinsky I, Alpert P (2006) Calendaricities and multimodality in the Eastern Mediterranean cyclonic activity. Nat Hazards Earth Syst Sci 587–596

  • Pease PP, Tchakerian VP, Tindale NW (1998) Aerosols over the Arabian Sea: geochemistry and source areas for aeolian desert dust. J Arid Environ 39:477–496

    Article  Google Scholar 

  • Pinto JG, Spangeh T, Ulbrich U, Speth P (2005) Sensitivities of a cyclone detection and tracking algorithm: individual tracks and climatology. Meteorol Z 14:823–838

    Article  Google Scholar 

  • Prakash PJ, Stenchikov G, Kalenderski S, Osipov S, Bangalath H (2015) The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmos Chem Phys 15:199–222. https://doi.org/10.5194/acp-15-199

    Article  Google Scholar 

  • Prospero JM, Nees RT, Uematsu M (1987) Deposition rate of particulate and dissolved aluminum derived from Saharan dust in precipitation at Miami, Florida. J Geophys Res 92:14723–14731

    Article  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Invironmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:1002. https://doi.org/10.1029/2000RG000095

    Article  Google Scholar 

  • Rezazadeh M, Irannejad P, Shao Y (2013) Climatology of the Middle East dust events. Aeolian Res 10:103–109

    Article  Google Scholar 

  • Rosenfeld D, Rudich Y, Lahav R (2001) Desert dust suppressing precipitation: a possible desertification feedback loop. Proc Natl Acad Sci USA 98:5975–5980. https://doi.org/10.1073/pnas.101122798

    Article  Google Scholar 

  • Saaroni H, Bitan A, Alpert P, Ziv B (1996) Continental polar outbreaks into the Levant and eastern Mediterranean. Int J Climatol 16:1–17

    Article  Google Scholar 

  • Saaroni H, Ziv B, Bitan A, Alpert P (1998) Easterly wind storms over Israel. Theoret Appl Climatol 59:61–77

    Article  Google Scholar 

  • Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513:45–53

    Article  Google Scholar 

  • Torres O, Bhartia PK, Herman JR, Ahmad Z, Gleason K (1998) Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis. J Geophys Res 103:17099–17110

    Article  Google Scholar 

  • Tsvieli Y, Zangvil A (2005) Synoptic climatological analysis of “wet” and “dry” Red Sea troughs over Israel. Int J Climatol 25:1997–2015. https://doi.org/10.1002/joc.1232

    Article  Google Scholar 

  • Tsvieli Y, Zangvil A (2007) Synoptic climatological analysis of Red Sea Trough and non-Red Sea Trough rain situations over Israel. Adv Geosci Euro Geosci Union 12:137–143

    Article  Google Scholar 

  • Tyrlis E, Lelieveld J, Steil B (2013) The summer circulation over the eastern Mediterranean and the Middle East: influence of the South Asian monsoon. Clim Dyn 40(5–6):1103–1123. https://doi.org/10.1007/s00382-012-1528-4

    Article  Google Scholar 

  • Washington RW, Todd MC, Middleton N, Goudie AS (2003) Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations. Ann Assoc Am Geogr 93:297–313

    Article  Google Scholar 

  • Yu Y, Notaro M, Liu Z, Kalashnikova O, Alkolibi F, Fadda E, Bakhrjy F (2013) Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite, radiometric, and station data. J Geophys Res Atmos 118:13253–13264

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant no. G: 257-155-1440. The authors, therefore, acknowledge and are grateful to the DSR for technical and financial support. The authors also acknowledge the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) for providing meteorological data and the National Aeronautics and Space Administration (NASA) for providing the TOMS data online.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel M. Awad.

Additional information

Responsible Editor: C. Simmer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashat, AW.S., Awad, A.M., Assiri, M.E. et al. Synoptic pattern of the Red Sea trough associated with spring dust over the northern and western Arabian Peninsula. Meteorol Atmos Phys 133, 655–673 (2021). https://doi.org/10.1007/s00703-020-00771-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-020-00771-0

Navigation